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Abstract How can we analyze large-scale real-world data
with various attributes? Many real-world data (e.g., network
traffic logs, web data, social networks, knowledge bases,
and sensor streams) with multiple attributes are represented
as multi-dimensional arrays, called tensors. For analyzing
a tensor, tensor decompositions are widely used in many
data mining applications: detecting malicious attackers in
network traffic logs (with source IP, destination IP, port-
number, timestamp), finding telemarketers in a phone call
history (with sender, receiver, date), and identifying inter-
esting concepts in a knowledge base (with subject, object,
relation). However, current tensor decomposition methods
do not scale to large and sparse real-world tensors with mil-
lions of rows and columns and ‘fibers.’ In this paper, we
proposeHaTen2, a distributed method for large-scale tensor
decompositions that runs on the MapReduce framework.
Our careful design and implementation of HaTen2 dramat-
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ically reduce the size of intermediate data and the number
of jobs leading to achieve high scalability compared with
the state-of-the-art method. Thanks to HaTen2, we analyze
big real-world sparse tensors that cannot be handled by the
current state of the art, and discover hidden concepts.

Keywords Tensor · Distributed computing · Big data ·
MapReduce · Hadoop

1 Introduction

Given historic records of millions of people calling each
other, how can we identify telemarketers who make a lot of
calls, but never receive ones? How can we detect suspicious
attackers in a network packet transmission log? In general,
how can we analyze large-scale real-world data with various
attributes? Many real-world data (e.g., knowledge bases [1],
web data [2], network traffic data [3], andmany others [4–6])
with multiple attributes are represented as multi-dimensional
arrays, called tensors. In analyzing a tensor, tensor decompo-
sitions are powerful tools in many data mining applications:
correlation analysis on sensor streams [4], latent semantic
indexing on DBLP publication data [7], multi-aspect foren-
sics on network data [3], network discovery on fMRI data [6],
to name a few. Using tensor decompositions, we find latent
factors (or relations) within the data. These latent factors
can be roughly and informally seen as soft clustering of the
data. For example, decomposing a tensor constructed from
the phone call history (with sender, receiver, date) into R
latent factors corresponds to finding R clusters of senders
that call a set of receivers on a specific date.

PARAFAC and Tucker are twowidely used tensor decom-
positions. Since there is no single generalization of singular
value decomposition (SVD) for a tensor, both PARAFAC
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and Tucker are considered as extensions of SVD to higher
dimensions. PARAFAC is useful for decomposing a tensor
into rank-one tensors which form the latent factors; Tucker
is more suitable for compressing tensors and examining rela-
tions between the latent factors. Tucker is a more generalized
version of PARAFAC, since the factors interact with all pairs
of other factors.

Tensor decompositions have been extensively studied for
various datamining tasks.However,most of tensor decompo-
sition algorithms designed to deal with tensors fitting inmain
memory fail to decompose recent large-scale real-world ten-
sors withmillions and billions of rows, columns, and ‘fibers.’
The main challenge is to overcome the intermediate data
explosion problem in distributed systems where the size of
intermediate data exceeds the capacity of a single machine
or even a cluster as the size of an input tensor gets larger.
For example, if the size of the input tensor X ∈ R

I×J×K

is I = J = K = 1 millions, the size of intermediate data
of the n-mode product in Tucker would become 1 Exabyte
(=1018 bytes) with a straightforward implementation using
distributed systems. Thus, we need to develop scalable and
distributed tensor decomposition algorithms.

In this paper, we propose HaTen2 (which stands for
Hadoop Tensor method for 2 decompositions), a scal-
able tensor decomposition suite for Tucker and PARAFAC
decompositions on Hadoop [8], an open-source version
of the MapReduce framework [9]. HaTen2 provides both
unconstrained and nonnegativity-constrainedPARAFACand
Tucker decompositions: HaTen2-PARAFAC and HaTen2-
Tucker for unconstrained version, and HaTen2-
PARAFACNN and HaTen2-TuckerNN for nonnegativity-
constrained version. Nonnegative tensor decomposition
receives increasing attention because its result gives the ben-
efit of easy interpretation, thanks to the nonnegativity in
the factors. By carefully reordering operations and exploit-
ing the sparsity of real-world tensors, HaTen2 solves the
intermediate data explosion problem in distributed systems.
Furthermore,HaTen2 significantly reduces the running time
by integrating several redundant jobs. As a result, HaTen2
is able to analyze data that are several orders of magnitude
larger than what the state of the art can handle. Applying
HaTen2 to several real-world tensors, we discovermalicious
attackers in network traffic logs (with source IP, destination
IP, port-number, timestamp), telemarketers in a phone call
history (with sender, receiver, date), and interesting concepts
in a knowledge base (with subject, object, relation).

Our main contributions are the following:

– Algorithm HaTen2 provides a unified framework, for
unconstrained and nonnegativity-constrained Tucker and
PARAFAC decompositions for sparse real-world tensors
in distributed systems, which significantly reduce the
intermediate data size and the running time.

– Scalability HaTen2 decomposes up to 100× larger ten-
sors without constraints as shown in Fig. 1 and up to
1000× larger tensors with the nonnegativity constraint
as shown in Fig. 8. Furthermore, HaTen2 scales up near
linearly on the number of machines.

– Discovery By applyingHaTen2, we discover interesting
patterns on various real-world data—knowledge bases,
network traffic logs, and phone call history—with mil-
lions of rows, columns, and fibers which were hard to
analyze by existing methods.

The binary code and datasets are available at http://
datalab.snu.ac.kr/haten2. The preliminary version of this
work is described in [10]. In this work, we add two
tensor decompositions (HaTen2-PARAFACNNandHaTen2-
TuckerNN) for nonnegativity constraints and formulate them
using our HaTen2 framework (Sect. 3.3). Furthermore, we
present the additional discovery results on the three real-
world tensors: concept discovery results on RDF knowledge
base (Freebase-sampled), network traffic pattern discovery
results on network traffic logs, and phone call pattern dis-
covery results on phone call history (Phonecall) (Sects. 5.1,
5.2 and 5.3).

The rest of paper is organized as follows: Section 2
presents the preliminaries of the tensor and its decompo-
sitions. Section 3 describes our proposed method for the
scalable tensor decompositions. After presenting the experi-
mental results and discoveries in Sects. 4 and 5, we discuss
related works in Sect. 6. Then we conclude in Sect. 7.

2 Preliminaries

In this section, we describe the preliminaries on tensor and
its decompositions. Table 1 shows the definitions of symbols
used in this paper. Matrices are denoted by boldface capitals
(e.g., B), and the r th row of the matrix B is denoted by br .
Vectors are denoted by boldface lowercases (e.g., a).

2.1 Tensor

Tensor Tensor is a multi-dimensional array. Each ‘dimen-
sion’ of a tensor is calledmode orway. An N -mode or N -way
tensor is denoted by X ∈ R

I1×I2×···×IN . bin(X) denotes a
function that converts nonzero elements in X to 1. nnz(X)

means the number of nonzero elements of X, and idx(X)

means the set of indexes (e.g., (i, j, k) for 3-mode tensorX)
of nonzero elements in X.
Fibers and slicesAfiber is defined by fixing all but one index.
In a 3-way tensor, it is denoted by X: jk,Xi :k, and Xi j :. A
slice is defined by fixing all indices but two indices. In a
3-way tensor, it is denoted by Xi ::,X: j : and X::k .
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Fig. 1 Data scalability of our proposed HaTen2-DRI compared to
other methods, for Tucker decomposition. The datasets are explained
in detail in Sect. 4.1. o.o.m.: out of memory. Density is defined to be the
number of nonzeros divided by the number of all elements in a tensor.

Note that our best method HaTen2-DRI analyzes 10–100 larger data
than the Tensor Toolbox. a Nonzeros and dimensionality, b density, c
core, d order

Table 1 Table of symbols

Symbol Definition

X A tensor

X(n) Mode-n matricization of a tensor

a A scalar (lowercase, italic letter)

a A column vector (lowercase, bold letter)

A A matrix (uppercase, bold letter)

R Number of components

◦ Outer product

⊗ Kronecker product

� Khatri–Rao product

∗ Hadamard product

· Standard product

×̄n n-mode vector product

×n n-mode matrix product

∗̄n n-mode vector Hadamard product (Definition 1)

∗n n-mode matrix Hadamard product (Definition 5)

AT Transpose of A

‖M‖F Frobenius norm of M

bin(X) Function that converts nonzero elements of X to 1

nnz(X) Number of nonzero elements in X

idx(X) Set of indices ((i, j, k) or (i, j, k, l))
of nonzero elements in X

I, J, K Dimensions of each mode of input tensor X

P, Q, R Dimensions of each mode of core tensor G

Matricization of tensor Themode-n matricization of a tensor
X ∈ R

I1×I2×···×IN is denoted by X(n) ∈ R
In×(

∏
k �=n Ik ) and

arranges the mode-n fibers to be the columns of the resulting
matrix.
n-mode matrix product The n-mode matrix product of a ten-
sor X ∈ R

I1×I2×···×IN with a matrix U ∈ R
J×In is denoted

by X ×n U and is of size I1 × · · · In−1 × J × In+1 · · · × IN .
It is defined by

(X ×n U)i1...in−1 j in+1...iN =
In∑

in=1

xi1i2...iN u jin .

n-mode vector product The n-mode vector product of a tensor
X ∈ R

I1×I2×···×IN with a vector v ∈ R
In is denoted byX×̄nv

and is of size I1 × · · · In−1 × In+1 . . . × IN . It is defined by

(X×̄nv)i1...in−1in+1...iN =
In∑

in=1

xi1i2...iN vin .

Kronecker product The Kronecker product of matrices A ∈
R

I×J and B ∈ R
K×L is denoted by A ⊗ B. The result is a

matrix of size (I K ) × (J L) and defined by

A ⊗ B =

⎡

⎢
⎢
⎢
⎣

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aI JB

⎤

⎥
⎥
⎥
⎦

= [
a1⊗b1 a1⊗b2 a1⊗b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]

Khatri–Rao product The Khatri–Rao product (or column-
wiseKronecker product) (A � B), whereA,B have the same
number of columns, say R, is defined as:

A � B = [
A(:, 1) ⊗ B(:, 1) · · ·A(:, R) ⊗ B(:, R)

]

where A(:, r) is the r th column of A. If A is of size I × R
and B is of size J × R then (A � B) is of size I J × R.
Hadamard product The Hadamard product A ∗ B is the ele-
mentwise matrix product, where A and B have the same size
(I × J ), and is defined as:

A ∗ B =

⎡

⎢
⎢
⎢
⎣

a11b11 a12b12 · · · a1Jb1J

a21b21 a22b22 · · · a2Jb2J
...

...
. . .

...

aI1bI1 aI2bI2 · · · aI JbI J

⎤

⎥
⎥
⎥
⎦
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Fig. 2 Rank-R PARAFAC decomposition of a three-way tensor. The
tensor X is decomposed as three factor matrices A, B, and C

2.2 Basic tensor decomposition

Tensor decomposition is a general tool for tensor analysis.
Using tensor decomposition, we find latent factor or relations
among data. In this paper, we focus on two major tensor
decompositions, PARAFAC and Tucker.

2.2.1 PARAFAC decomposition

PARAFAC (parallel factors) decomposition [11], also called
CANDECOMP (canonical decomposition), decomposes a
tensor into a sum of rank-one tensors. There has been rich
literature on algorithms for the PARAFAC decomposition, a
concise summary thereof can be found in [12].
PARAFAC decomposition for 3-way tensor Given a 3-way
tensorX ∈ R

I×J×K and rank R, PARAFAC decomposition
factorizes the tensor into 3 factor matrices, A, B, and C, as
follows:

X ≈ [λ;A,B,C] =
R∑

r=1

λrar ◦ br ◦ cr

where R is a positive integer (typically between 10 and 100),
λ is a weight vector, and A ∈ R

I×R , B ∈ R
J×R , and C ∈

R
K×R are the factor matrices. Figure 2 shows the 3-way

PARAFAC tensor decomposition.
PARAFAC decomposition for N-way tensor Given an N -way
tensorX ∈ R

I1×I2×···×IN and rank R, PARAFAC decompo-
sition factorizes the tensor into N factor matrices,A(1),A(2),
…, A(N ), as follows:

X ≈ [λ;A(1),A(2), . . . ,A(N )] =
R∑

r=1

λra(1)
r ◦ a(2)

r ◦ · · · ◦ a(N )
r .

where R is a positive integer, λ is a weight vector, andA(1) ∈
R

I1×R , A(2) ∈ R
I2×R , …, A(N ) ∈ R

IN ×R are the factor
matrices.

PARAFAC-ALS Algorithm 1 shows the alternating least
squares algorithm for 3-way PARAFAC decomposition
where † denotes the pseudo-inverse operation. The stopping
criterion forAlgorithm1 is either one of the following: (1) the
difference between the two least squares errors of consecu-
tive iterations is smaller than a threshold or (2) the maximum
number of iterations is exceeded.

Algorithm 1: 3-way PARAFAC-ALS.

Input: Tensor X ∈ R
I×J×K , rank R, maximum iterations T

Output: PARAFAC decomposition λ ∈ R
R×1,A ∈ R

I×R ,
B ∈ R

J×R , C ∈ R
K×R

1: Initialize A,B,C;
2: for t = 1, . . . , T do
3: A ← X(1) (C � B) (CT C ∗ BT B)†;
4: Normalize columns of A (storing norms in vector λ);
5: B ← X(2) (C � A) (CT C ∗ AT A)†;
6: Normalize columns of B (storing norms in vector λ);
7: C ← X(3) (B � A) (BT B ∗ AT A)†;
8: Normalize columns of C (storing norms in vector λ);
9: if stopping criterion is met then
10: break for loop;
11: end if
12: end for
13: return λ,A,B,C;

2.2.2 Tucker decomposition

In Tucker decomposition [13], called N-mode PCA or N-
mode SVD, a tensor is decomposed into a core tensor and
factor matrices of each mode. The factor matrices repre-
sent the principal components of each mode, and the core
tensor represents the interactions between the different com-
ponents. Tucker decomposition is amore generalized version
of PARAFAC decomposition, since the factors interact with
all pairs of other factors.
Tucker decomposition for 3-way tensor The 3-way tensor is
decomposed as follows:

X ≈ [G;A,B,C] = G ×1 A ×2 B ×3 C

=
P∑

p=1

Q∑

q=1

R∑

r=1

gpqrap ◦ bq ◦ cr

where G ∈ R
P×Q×R is the core tensor, and A ∈ R

I×P ,B ∈
R

J×Q , and C ∈ R
K×R are the factor matrices. Figure 3

shows the Tucker decomposition of a 3-way tensor.
Tucker decomposition for N-way tensor The N-way tensor is
decomposed as follows:

X ≈ [G;A(1),A(2), . . . ,A(N )]
= G ×1 A(1) ×2 A(2) · · · ×N A(N )
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Fig. 3 Tucker decomposition of a three-way tensor. The tensor X is
decomposed as a core tensor G, and three factor matrices A, B, and C

where G ∈ R
J1×J2···×JN is the core tensor, and A(1) ∈

R
I1×J1,A(2) ∈ R

I2×J2 , …, and A(N ) ∈ R
IN ×JN are the fac-

tor matrices.
Tucker-ALS Tucker-ALS algorithm uses an alternating least
squares approach. For updating each factor, there are some
approaches such asSVD,Bauer–Rutishauser,Gram–Schmidt
and NIPALS [14].

Algorithm 2 shows the standard SVD-based algorithm for
3-way Tucker decomposition.

Algorithm 2: 3-way Tucker-ALS

Input: Tensor X ∈ R
I×J×K , desired core size: P × Q × R

Output: Core tensor G ∈ R
P×Q×R and orthogonal factor matrices

A ∈ R
I×P ,B ∈ R

J×Q , and C ∈ R
K×R

1: Initialize B,C;
2: repeat
3: Y← X×2 BT ×3 CT ;
4: A ← P leading left singular vectors of Y(1);
5: Y← X×1 AT ×3 CT ;
6: B ← Q leading left singular vectors of Y(2);
7: Y← X×1 AT ×2 BT ;
8: C ← R leading left singular vectors of Y(3);
9: G← Y×3 C;
10: until ||G|| ceases to increase or the maximum number of outer

iterations is exceeded.

2.3 Nonnegative tensor decomposition

Nonnegative tensor decomposition (NTD) is a tensor decom-
position with the constraint enforcing all elements in the
factors to be nonnegative. Since all elements have nonnega-
tive values, the result of NTD ismore interpretable. Themost
widely used method for nonnegative tensor decomposition
or nonnegative matrix decomposition is the multiplicative
update rule proposed by Lee and Seung [15]. They use the
Euclidean distance and Kullback–Leibler divergence for the
cost function. Lemma 1 [15] is the Euclidean distance ver-
sion of the multiplicative update rule for nonnegative matrix
decomposition.

Lemma 1 When factoring the input matrix V into WH, the
Euclidean distance ‖V − WH‖ is nonincreasing under the
update rules

Haμ ← Haμ

(WTV)aμ

(WTWH)aμ

,Waμ ← Waμ

(VTH)aμ

(WHHT )aμ

.

The Euclidean distance is invariant under these updates if
and only if W and H are at a stationary point of the distance.

Since this rule is composed of only elementwise multipli-
cation and division, if an initial matrix is nonnegative, then
all interim matrices become nonnegative. The convergence
of the multiplicative update rule is proved in the paper [15].

2.3.1 Nonnegative PARAFAC decomposition

The definition and algorithm of nonnegative PARAFAC
decomposition for 3-way tensor are as follows:
Nonnegative PARAFAC decomposition for 3-way tensor
Given a nonnegative tensor X, the nonnegative PARAFAC
decomposition solves

min
A,B,C

∥
∥
∥
∥
∥
X −

R∑

r=1

λrar ◦ br ◦ cr

∥
∥
∥
∥
∥

,

subject to ar ≥ 0,br ≥ 0, cr ≥ 0, where A ∈ R
I×R+ ,B ∈

R
J×R+ , and C ∈ R

K×R+ are factor matrices of PARAFAC
decomposition.
Nonnegative PARAFAC-ALS Algorithm 3 shows nonnega-
tive PARAFAC-ALS algorithm for a 3-way tensor using
multiplicative update rule [16]. The stopping criterion of
Algorithm 3 is the same as that of Algorithm 1.

Algorithm 3: 3-way nonnegative PARAFAC-ALS

Input: Tensor X ∈ R
I×J×K+ , rank R, maximum iterations T .

Output: PARAFAC decomposition λ ∈ R
R×1,A ∈ R

I×R+ ,
B ∈ R

J×R+ , C ∈ R
K×R+ .

1: Initialize A,B,C with nonnegative values;
2: for t = 1, . . . , T do
3: A ← A ∗ X(1)(C�B)

A(CT C∗BT B)
;

4: Normalize columns of A (storing norms in vector λ);

5: B ← B ∗ X(2)(C�A)

B(CT C∗AT A)
;

6: Normalize columns of B (storing norms in vector λ);

7: C ← C ∗ X(3)(B�A)

C(BT B∗AT A)
;

8: Normalize columns of C (storing norms in vector λ);
9: if stopping criterion is met then
10: break for loop;
11: end if
12: end for
13: return λ,A,B,C;

2.3.2 Nonnegative tucker decomposition

The definition and algorithm of the nonnegative Tucker
decomposition for 3-way tensor are as follows:
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Nonnegative Tucker decomposition for 3-way tensor Given a
nonnegative tensorX, the nonnegativeTucker decomposition
solves

min
A,B,C

‖X −
P∑

p=1

Q∑

q=1

R∑

r=1

gpqrap ◦ bq ◦ cr‖,

subject to gpqr ≥ 0, ap ≥ 0,bq ≥ 0, cr ≥ 0, where G ∈
R

P×Q×R
+ is the core tensor, and A ∈ R

I×P+ ,B ∈ R
J×Q
+ , and

C ∈ R
K×R+ are factor matrices of Tucker decomposition.

Nonnegative Tucker-ALS Kim and Choi extend multiplica-
tive rule-based nonnegative PARAFAC decomposition to
nonnegative Tucker decomposition. Algorithm 4 shows non-
negative Tucker-ALS algorithm for a 3-way tensor using
multiplicative update rule [17].

Algorithm 4: 3-way nonnegative Tucker-ALS

Input: Tensor X ∈ R
I×J×K+ , desired core size: P × Q × R

Output: Core tensor G ∈ R
P×Q×R
+ and orthogonal factor matrices

A ∈ R
I×P+ ,B ∈ R

J×Q
+ , and C ∈ R

K×R+
1: Initialize B,C;
2: repeat

3: A ← A ∗ (X×2BT ×3CT )(1)GT
(1)

A(G×2BT B×3CT C)(1)GT
(1)
;

4: Normalize columns of A;

5: B ← B ∗ (X×1AT ×3CT )(2)GT
(2)

B(G×1AT A×3CT C)(2)GT
(2)
;

6: Normalize columns of B;

7: C ← C ∗ (X×1AT ×2BT )(3)GT
(3)

C(G×1AT A×2BT B)(3)GT
(3)
;

8: Normalize columns of C;
9: G← G∗ X×1AT ×2BT ×3CT

G×1AT A×2BT B×3CT C
;

10: until ||G|| ceases to increase or the maximum number of outer
iterations is exceeded.

3 Proposed method

In this section, we presentHaTen2, our proposed distributed
MapReduce algorithms for large-scale tensor decomposi-
tions. Section 3.1 gives the main ideas of HaTen2, Sect. 3.2
describes details of HaTen2, and Sect. 3.3 extends HaTen2
for handling the nonnegativity constraints.

3.1 Overview

How can we design scalable and efficient PARAFAC/Tucker
decomposition algorithms for very large tensors? The most
challenging parts of those algorithms are n-mode matrix
product Y ← X ×2 BT ×3 CT (lines 3, 5, and 7 of Algo-
rithms 2 and 4) in Tucker-ALS and nonnegative Tucker-ALS,
and Khatri–Rao productY ← X(1) (C � B) (lines 3, 5, and 7
of Algorithms 1 and 3) in PARAFAC-ALS and nonnegative

PARAFAC-ALS. There are several challenges in designing
efficient distributed algorithms for these operations.

– Minimize intermediate data During the computation,
huge intermediate data are generated in the shuffle stage.
How can we minimize the intermediate data?

– Minimize disk accesses How can we minimize the disk
accesses to decrease the running time?

– Minimize jobs How can we minimize the number of
MapReduce jobs to decrease the running time?

Our main ideas to address the challenges are as follows:

– Decoupling the steps in n-mode vector product We
decouple the multiplication and the addition steps in
n-mode vector product by introducing a new operation
called Hadamard-and-Merge which leads to decreasing
the intermediate data size (Sect. 3.2.2).

– Removing dependencies in sequential products We
remove dependencies by carefully reordering the compu-
tations and exploiting the sparsity of real-world tensors.
It leads to further decreasing the intermediate data size
(Sect. 3.2.3).

– Integrating jobs by increasing memory usage We inte-
grate multiple MapReduce jobs by increasing memory
usage. The idea leads to minimizing the number of jobs
and the disk accesses (Sect. 3.2.4).

Figure 4 shows the framework of our proposed HaTen2-
DRI (or just HaTen2) method which contains all the above
ideas. Note that although the computations for the two
decompositions Tucker and PARAFAC are different, our
HaTen2 unifies them into a general framework where the
two methods differ only at the final merge step: HaTen2-
Tucker uses Cross Merge, while HaTen2-PARAFAC uses
Pairwise-Merge (see Sect. 3.2.4 for details). In the next
subsection, we describe the three main ideas in detail.

3.2 Method details

In the following, we start with a naive method and improve
themethod gradually by adding several ideas one by one until
we reach the final method HaTen2-DRI (or just HaTen2).
Figure 5 and Table 2 summarize the differences between all
methods. Tables 3 and 4 show the total costs of all the meth-
ods, in terms of the maximum intermediate data size, and the
number of total MapReduce jobs.

3.2.1 Naive method

The most naive method is the straightforward implemen-
tation of the idea in MET [5], the state-of-the-art single-
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Fig. 4 General computational
framework in HaTen2 for
Tucker and PARAFAC
decompositions (Q = R in
PARAFAC). Although the two
decompositions are different,
our HaTen2 unifies them into a
general framework where the
two methods differ only at the
final merge step: Cross Merge
for HaTen2-Tucker, and
PairwiseMerge for
HaTen2-PARAFAC (see
Sect. 3.2.4 for details)

Fig. 5 Comparison of all HaTen2 variants for Tucker decomposition. Areas with the same color are sent to the same reducer in theMapReduce
jobs for n-mode (Hadamard) product

machine implementation which was adopted by Tensor
Toolbox. The main idea is to perform each n-mode vector
product separately. HaTen2-Tucker-Naive computes T =
X×2 BT first by performingX×̄2bT

q operation Q times and
then computes T ×3 CT by performing T×̄3cT

r operation R
times, where bq and cr are the qth row ofB and the r th row of
C, respectively. Algorithm 5 shows HaTen2-Tucker-Naive
method.

Similarly, HaTen2-PARAFAC-Naive computes Tr =
X×̄2bT

r first and then computes Yr = Tr ×̄3cT
r . It com-

putesY by performing these operations R times. Algorithm 6
shows HaTen2-PARAFAC-Naive method.

Algorithm 5: HaTen2-Tucker-Naive for computing
Y ← X ×2 BT ×3 CT

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×Q ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×Q×R

1: for q=1,..,Q do
2: Tq ← X×̄2bT

q ;
3: end for
4: for r=1,..,R do
5: Yr ← T×̄3cT

r ;
6: end for

MAPREDUCE algorithm TheMapReduce algorithm of n-
mode vector productX×̄2bT

q inHaTen2-Naive is as follows:
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Table 2 Comparison of all methods experimented

Method Distributed? Decoupling the steps (D/N) Remove dependencies (R/N) Integrating jobs (I/N)
(Sect. 3.2.2) (Sect. 3.2.3) (Sect. 3.2.4)

Tensor toolbox No No No No

HaTen2-Naive Yes No No No

HaTen2-DNN Yes Yes No No

HaTen2-DRN Yes Yes Yes No

HaTen2-DRI (or just HaTen2) Yes Yes Yes Yes

Our proposed and recommended method is HaTen2-DRI (or just HaTen2) which incorporates all the proposed ideas

Table 3 Summary of costs in
all methods for computing
X×2 B ×3 C in Tucker
decomposition. We replace
nnz(X×2 B) with nnz(X)Q
according to the estimation of
nnz(X×2 B) in Lemma 4

Method Max. intermediate data Total jobs

HaTen2-Tucker-Naive nnz(X) + I J K Q + R

HaTen2-Tucker-DNN nnz(X)Q R Q + R + 2

HaTen2-Tucker-DRN nnz(X)(Q + R) Q + R + 1

HaTen2-Tucker-DRI nnz(X)(Q + R) 2

Table 4 Summary of costs in
all methods for computing
X(1)(C � B) in PARAFAC
decomposition

Method Max. intermediate data Total jobs

HaTen2-PARAFAC-Naive nnz(X) + I J K 2R

HaTen2-PARAFAC-DNN nnz(X) + J 4R

HaTen2-PARAFAC-DRN 2nnz(X)R 2R + 1

HaTen2-PARAFAC-DRI 2nnz(X)R 2

Algorithm6:HaTen2-PARAFAC-Naive for computing
Y ← X(1) (C � B)

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×R ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×R

1: for r=1,..,R do
2: Tr ← X×̄2bT

r ;
3: Yr ← Tr ×̄3cT

r ;
4: end for

<Naive: X×̄2bT
q >

– MAP: map <i, j , k, X(i, j, k)> on (i K + k), such
that tuples with the same key are shuffled to the
same reducer in the form of <key: (i K + k), values:
{( j,X(i, j, k))|∀(i, j, k) ∈ idx(Xi :k)} >, and sendbq to
the all the reducers in the form of<key: (i K +k)|∀(i, k),
values: {( j,bq( j))|∀ j ∈ idx(bq)}>.

– REDUCE: take<key: (i K+k), values: {( j,bq( j))|∀ j ∈
idx(bq)}, {( j,X(i, j, k))|∀(i, j, k) ∈ idx(Xi :k)} >, and
emit < i, k,

∑J
j=1X(i, j, k)bq( j)>.

The reducer processing the key i K + k receives the
nonzero elements ofXi :k and bq . Then it performs the inner
product of the twovectors and outputs an element of the result
tensor Tq . T×̄3cT

r operation is handled in the same manner.

Although simple, this naive implementation has too much
overhead because (1) the vector bT

q is copied I K timeswhich
eventually generates too much intermediate data (nnz(X) +
I J K ) and (2) the vector bT

q might not fit in the memory of
a machine when J is very large. How can we improve this
naive method? In the following three subsections, we incre-
mentally improve the naive method.

3.2.2 Decoupling the steps in n-mode vector product

The first idea to improve the naive method is to make the n-
mode vector product ×̄n scalable. As we saw in the previous
subsection, the naive algorithm which broadcasts the vector
bT

q has too much overhead. Our idea, called Hadamard-
and-Merge, is to decouple the product into two steps: The
Hadamard product step where the element of the vector
is multiplied with the corresponding element of the ten-
sor, and the merge step where the multiplied values are
summed. Hadamard-and-Merge operation comprises the two
following operations: n-mode vector Hadamard product and
Collapse.

Definition 1 (n-mode vector Hadamard product) The n-
mode vectorHadamard product of a tensorX ∈ R

I1×I2×···×IN

and a vector v ∈ R
In is denoted by X∗̄nv and is of size

I1 × I2 × · · · × IN . It is defined by
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(X∗̄nv)i1...in ...iN = xi1...in ...iN vin .

Definition 2 (Collapse(X)n) The Collapse operation of
a tensor X ∈ R

I1×I2×···×IN on mode n is denoted by
Collapse(X)n and is of size I1×···×I(n−1)×I(n+1)×···×IN .
It is defined by

(Collapse(X)n)i1...in−1in+1...iN =
In∑

in=1

xi1...in ...iN .

Intuitively, the n-mode vector Hadamard product is a
generalization of Hadamard product of two vectors. The
Collapse(X)n operation sums up all the values of a tensor
X across the mode n. With these definitions, HaTen2-
DNN expresses the original n-mode vector product X×̄2bT

q

by Collapse (X∗̄2bT
q )2. By decoupling the n-mode vector

product into two steps, HaTen2-DNN greatly decreases the
intermediate data size of HaTen2-Naive from nnz(X) +
I J K to nnz(X)Q R for Tucker, and from nnz(X) + I J K
to nnz(X) + J for PARAFAC. Algorithms 7 and 8 show
HaTen2-DNN for Tucker and PARAFAC decompositions,
respectively. In HaTen2-Tucker-DNN, we compute T =
X×2BT ∈ R

I×Q×K by iteratively performingT′
q = X∗̄2bT

q
for Q times and then merging them using the operation
Collapse(T′)2. T ×3 CT operation is handled in the same
manner. In HaTen2-PARAFAC-DNN, Collapse is applied
right after the individual n-mode vector Hadamard product.

Algorithm 7: HaTen2-Tucker-DNN for computing
Y ← X ×2 BT ×3 CT

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×Q ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×Q×R

1: for q=1,..,Q do
2: T′

q ← X∗̄2bT
q ;

3: end for
4: T ← Collapse(T′)2;
5: for r=1,..,R do
6: Y′

r ← T∗̄3cT
r ;

7: end for
8: Y← Collapse(Y′)3;

MAPREDUCE algorithm The MapReduce algorithms of
n-mode vector Hadamard product and Collapse(X)n in
HaTen2-DNN are expressed as follows:

< X∗̄2bT
q >

– MAP: map <i, j, k,X(i, j, k)> on j , and < j, q,

bq( j)> on j such that tuples with the same key are shuf-
fled to the same reducer in the form of <key: j , values:
(q,bq( j)), {(i, k,X(i, j, k))|∀(i, k) ∈ idx(Xi :k)}>.

Algorithm 8:HaTen2-PARAFAC-DNN for computing
Y ← X(1) (C � B)

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×R ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×R

1: for r=1,..,R do
2: T′

r ← X∗̄2bT
r ;

3: Tr ← Collapse(T′
r )2;

4: Y′
r ← Tr ∗̄3cT

r ;
5: Yr ← Collapse(Y′

r )3;
6: end for

– REDUCE: take <key: j , values: (q,bq( j)), {(i, k,X(i,
j, k))|∀(i, k) ∈ idx(Xi :k)}> and emit <i, j, k, q,X(i,
j, k)bq( j)> for each (i, k) ∈ idx(Xi :k).

<Collapse(T)2>

– MAP: map <i, j, k, q,X(i, j, k)B( j, q)> on (i K + k)

such that tuples with the same key are shuffled to the
same reducer in the form of <key: (i K + k), values:
{(q,X(i, j, k)B( j, q))|∀(i, j, k, q) ∈ idx(Ti :k:)}>.

– REDUCE: take <key: (i K + k), values: {(q,X(i, j, k)

B( j, q))|∀(i, j, k, q) ∈ idx(Ti :k:)}> and emit <i, q, k,∑
j X(i, j, k)B( j, q)> for each (i, j, k, q) ∈ idx(Ti :k:).

In n-mode vector Hadamard product, the mappers send
nnz(X: j :) of j th slice and an element of bq to reducers using
j as the key. The reducers multiply the vector element with
the tensor elements. In Collapse operation, mappers send
nnz(Xi :k)Q elements to reducers using i K + k as the key.
The reducers aggregate the values.

3.2.3 Removing dependencies in sequential products

The previous two methods HaTen2-Naive and HaTen2-
DNN have a significant problem: they have dependencies
in their computation sequences. In Tucker decomposition, to
computeY ← X×2BT ×3CT , both of the previous methods
first compute T = X ×2 BT by multiplying X and columns
of B, and then multiply T with the columns of C . That is,
the second step cannot be initiated until the first step is fin-
ished. Similarly, in PARAFAC decomposition, computing
Y ← X(1) (C � B) has a dependency: X is multiplied with
bT first, and the result is multiplied with cT . These depen-
dencies in the computation have the following problems.

– Too large intermediate data: inTucker decomposition, the
number nnz(T) of nonzero elements in T = X ×2 BT

is estimated to be nnz(X)Q for a sparse tensor X,
as described in Lemma 4. Thus, multiplying T with
CT would require intermediate data of size nnz(X)Q R
which is prohibitively large.
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– Too many MapReduce jobs: in PARAFAC decompo-
sition, HaTen2-PARAFAC-DNN requires 4R MapRe-
duce jobs, since the first multiplication with bT , and the
secondmultiplicationwith cT are performed in sequence.

Our idea to solve the problems is to remove the dependen-
cies by carefully reordering the computations, and exploiting
the sparsity of real-world tensors. Before describing the
details, we introduce two new operations Cross Merge and
PairwiseMerge as follows:

Definition 3 (Cross Merge) The Cross Merge operation
of N − 1 tensorsX1 ∈ R

I1×···×IN ×J1 , …,Xn−1,Xn+1, . . . ,

XN ∈ R
I1×···×IN ×JN on the mode n is denoted by

Cross Merge(X1, . . . ,Xn−1,Xn+1, . . . ,XN )(n) and is of
size RIn×J1×···×JN . It is defined by

(Cross Merge(X1, . . . ,Xn−1,Xn+1, . . . ,XN )(n))in j1... jN =
I1,...,In−1,In+1,...,IN∑

(i1,...,in−1,in+1,...,iN )=(1,...,1)

X1(i1, . . . , iN , j1) × · · · × Xm(i1, . . . iN , jN ),

for all ji = 1, . . . , Ji where i �= n.

Definition 4 (PairwiseMerge) The PairwiseMerge
operation of N −1 tensorsX1, . . . ,Xn−1,Xn+1, . . . ,XN ∈
R

I1×···×IN ×J on the mode n is denoted by PairwiseMerge
(X1, . . . ,Xn−1,Xn+1, . . . ,XN )(n) and is of size RIn×J . It
is defined by

(PairwiseMerge(X1, . . . ,Xn−1,Xn+1, . . . ,XN )(n))in j =
I1,...,In−1,In+1,...,IN∑

(i1,...,in−1,in+1,...,iN )=(1,...,1)

X1(i1, . . . , iN , j) × · · · × Xm(i1, . . . iN , j),

for all j = 1, . . . , J .
Our crucial observation is that these two operations can

be used for removing the dependencies in the computations
ofX×2 BT ×3CT andX(1) (C � B), respectively, as shown
in the following lemmas.

Lemma 2 (CrossMerge) Given X ∈ R
I×J×K , B ∈ R

J×Q,
and C ∈ R

K×R,

X ×2 BT ×3 CT ⇔ Cross Merge(T′,T′′)(1)

where T′ ∈ R
I×J×K×Q is a tensor whose qth subtensor

T′:::q is given by X∗̄2bT
q , and T′′ ∈ R

I×J×K×R is a tensor

whose rth subtensor T′:::r is given by bin(X)∗̄3cT
r .

Proof The (i, q, k)th element Miqk of M = X ×2 BT is
given by

Miqk =
J∑

j=1

X(i, j, k)B( j, q).

Then the (i, q, r)th element of (X ×2 BT ) ×3 CT is

K∑

k=1

M(i, q, k)C(k, r)

=
K∑

k=1

(

J∑

j=1

X(i, j, k)B( j, q))C(k, r)

=
(J,K )∑

( j,k)=(1,1)

X(i, j, k)B( j, q)C(k, r) (1)

The (i, j, k, q)th element of subtensor T′:::q is given
by X(i, j, k)bT

q ( j), and (i, j, k, r)th element of subtensor
T′′:::r is given by (bin(X)(i, j, k))cT

r (k). Therefore, the
(i, j, k, q)th element of T′ is

T′
i jkq = X(i, j, k)B( j, q),

and the (i, j, k, r)th element of T′′ is

T′′
i jkr = (bin(X)(i, j, k))C(k, r).

The (i, q, r)th element of Cross Merge(T′,T′′)(1) is

(J,K )∑

( j,k)=(1,1)

T′(i, j, k, q)T′′(i, j, k, r).

=
(J,K )∑

( j,k)=(1,1)

X(i, j, k)B( j, q)(bin(X)(i, j, k))C(k, r)

=
(J,K )∑

( j,k)=(1,1)

X(i, j, k)B( j, q)C(k, r) (2)

where the last equality uses the factX(i, j, k)×(bin(X)(i, j,
k)) = X(i, j, k). The Eq. (1) for (i, q, r)th element ofX×2

BT ×3 CT is exactly the same as the Eq. (2) for (i, q, r)th
element of Cross Merge(T′,T′′)(1).

Lemma 3 (PairwiseMerge) Given X ∈ R
I×J×K , B ∈

R
J×R, and C ∈ R

K×R,

X(1) (C � B) ⇔ PairwiseMerge(F′,T′′)(1)

whereF′ ∈ R
I×J×K×R is a tensor whose rth subtensorF′:::r

is given by X∗̄2bT
r , and T′′ ∈ R

I×J×K×R is a tensor whose
rth subtensor T′:::r is given by bin(X)∗̄3cT

r .

Proof The (i, r)th element of M = X(1)(C � B) is defined
by

Mir =
(J,K )∑

( j,k)=(1,1)

X(i, j, k)B( j, r)C(k, r) (3)
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Fig. 6 Comparison of HaTen2-Tucker-DNN and HaTen2-Tucker-
DRN

The (i, j, k)th element of subtensor F′:::r is given by
X(i, j, k)bT

r ( j), and the (i, j, k)th element of subtensor
T′:::r is given by (bin(X)(i, j, k))cT

r (k). Therefore, the
(i, j, k, r)th element of F′ is

F′
i jkr = X(i, j, k)B( j, r),

and the (i, j, k, r)th element of T′′ is

T′′
i jkr = (bin(X)(i, j, k))C(k, r).

The (i, r)th element of PairwiseMerge(F′,T′′)(1) is

(J,K )∑

( j,k)=(1,1)

F′(i, j, k, r)T′′(i, j, k, r).

=
(J,K )∑

( j,k)=(1,1)

X(i, j, k)B( j, r)(bin(X)(i, j, k))C(k, r)

=
(J,K )∑

( j,k)=(1,1)

X(i, j, k)B( j, r)C(k, r) · · · (2). (4)

where the last equality uses the factX(i, j, k)×(bin(X)(i, j,
k)) = X(i, j, k). The Eq. (3) for (i, r)th element of
X(1)(C � B) is exactly the same as the Eq. (4) for (i, r)th
element of PairwiseMerge(F′,T′′)(1). ��

Using these two operations, HaTen2-DRN-Tucker,
shown in Algorithm 9, computes T′ and T′′ first, and then
merges the result. Figure 6 illustrates the difference of
HaTen2-Tucker-DRNandHaTen2-Tucker-DNN.Note that
both T′ and T′′ are sparse if the input tensor X is sparse,
which is true in most real-world tensors. Thus, HaTen2-
Tucker-DRN further decreases the intermediate data size
of HaTen2-DNN from nnz(X)Q R to nnz(X)(Q + R).
We want to emphasize that this decrease of the intermedi-
ate data size comes from the sparsity of real-world tensors
where nnz(X) ∼ I ; if the input tensor is a full tensor
(which is not realistic), the intermediate data size of HaTen2-
DNN becomes nnz(X)Q which is smaller than that of
HaTen2-DRN. Also, note that the removal of dependency in
HaTen2-DRN enables computing T′ and T′′ in parallel; the

idea is reflected in HaTen2-DRI (see Sect. 3.2.4 for details).
For PARAFAC decomposition, HaTen2-PARAFAC-DRN,
shown in Algorithm 10, decreases the number of MapRe-
duce jobs of HaTen2-PARAFAC-DNN from 4R to 2R +1.

Algorithm 9: HaTen2-Tucker-DRN for computing
Y ← X ×2 BT ×3 CT

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×Q ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×Q×R

1: for q=1,..,Q do
2: T′

q ← X∗̄2bT
q ;

3: end for
4: for r=1,..,R do
5: T′′

r ← bin(X)∗̄3cT
r ;

6: end for
7: Y← Cross Merge(T′,T′′)(1);

Algorithm 10: HaTen2-PARAFAC-DRN for comput-
ing Y ← X(1) (C � B)

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×R ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×R

1: for r=1,..,R do
2: F′

r ← X∗̄2bT
r ;

3: end for
4: for r=1,..,R do
5: T′′

r ← bin(X)∗̄3cT
r ;

6: end for
7: Y← PairwiseMerge(F′,T′′)(1);

MAPREDUCE algorithm The MapReduce algorithms of
Cross Merge(T′,T′′)(1) and PairwiseMerge(F′,T′′)(1)
operations are as follows:

<Cross Merge(T′,T′′)(1)>

– MAP: map <i, j, k, q,X(i, j, k)bq( j)> on (i, r Q + q)

for all r = 1, . . . R, and<i, j, k, r, cr (k)> on (i, r Q+q)

for all q = 1, . . . Q such that tuples with the same key
are shuffled to the same reducer in the form of <key:
(i, r Q + q), values: {( j, k,X(i, j, k)bq( j))|∀(i, j, k) ∈
idx(Xi ::)}, {( j, k, r, cr (k))|∀(i, j, k) ∈ idx(Xi ::)}>.

– REDUCE: take <key: (i, r Q + q), values:
{( j, k,X(i, j, k)bq( j))|∀(i, j, k) ∈ idx(Xi ::)}, {( j, k, r,
cr (k))|∀(i, j, k) ∈ idx(Xi ::)}> and emit <{i, q, r,
∑

j,k X(i, j, k)bq( j)cr (k) for all q = 1, . . . , Q, r =
1, . . . , R}> for each (i, j, k) ∈ idx(Xi ::).

<PairwiseMerge(F′,T′′)(1)>

– MAP: map <i, j, k, r,X(i, j, k)br ( j)> on (i, r), and
<i, j, k, r, cr (k)> on (i, r) such that tuples with the
same key are shuffled to the same reducer in the form of
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<key: (i, r), values: {( j, k,X(i, j, k)br ( j)) |∀(i, j, k) ∈
idx(Xi ::)}, {( j, k, cr (k))|∀(i, j, k) ∈ idx(Xi ::)}>.

– REDUCE: take <key: (i, r), values: {( j, k,X(i, j, k)

br ( j))|∀(i, j, k) ∈ idx(Xi ::)}, {( j, k, cr (k))|∀(i, j, k) ∈
idx(Xi ::)}> and emit <{i, r,

∑
j,k X(i, j, k)br ( j)cr (k)

for all r = 1, . . . , R}> for each (i, j, k) ∈ idx(Xi ::).

3.2.4 Integrating jobs by increasing memory usage

Although HaTen2-DRN decreased the intermediate data
size and the number of MapReduce jobs, the number of jobs
is still significant: it is Q + R + 1 for HaTen2-Tucker-DRN
and 2R+1 forHaTen2-PARAFAC-DRN. In this subsection,
we propose HaTen2-DRI to further decrease the number of
jobs to 2, thereby decreasing the disk accesses and the run-
ning time.Algorithms 11 and 12 showHaTen2-Tucker-DRI,
and HaTen2-PARAFAC-DRI, respectively. HaTen2-DRI
has two main ideas: integrating (1) vector products into a
matrix product, and (2) products for different factor matrices.

Algorithm 11: HaTen2-Tucker-DRI for computing
Y ← X ×2 BT ×3 CT

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×Q ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×Q×R

1: (T′,T′′) ← I M H P(X,B,C);
2: Y← Cross Merge(T′,T′′)(1);

Algorithm 12:HaTen2-PARAFAC-DRI for computing
Y ← X(1) (C � B)

Input: Tensor X ∈ R
I×J×K and factor matrices B ∈ R

J×R ,
C ∈ R

K×R

Output: Tensor Y ∈ R
I×R

1: (T′,T′′) ← I M H P(X,B,C);
2: Y← PairwiseMerge(T′,T′′)(1);

Integrating vector products into a matrix product HaTen2-
DRI performs several n-mode vector Hadamard products
together in one MapReduce job, instead of multiple jobs,
using the n-mode matrix Hadamard product which we define
as follows.

Definition 5 (n-mode matrix Hadamard product) The n-
mode matrix Hadamard product of a tensor
X ∈ R

I1×I2×···×IN with a matrix U ∈ R
Q×In is denoted by

X ∗n U and is of size I1 × I2 × · · · × IN × Q. It is defined by

(X ∗n U)i1i2...iN q = (X∗̄nUT
q:)i1i2...iN .

where Uq: is the qth row of U.

MAPREDUCE algorithm TheMapReduce algorithm of n-
mode matrix Hadamard product is as follows:

< X ∗2 B >

– MAP: map <i, j, k,X(i, j, k)> on j , and < j, q,

B( j, q)> on j such that tuples with the same key are
shuffled to the same reducer in the form of <key: j , val-
ues: {(q,B( j, q))|∀q ∈ {1, . . . , Q}}, {(i, k,X(i, j, k))|
∀(i, j, k) ∈ idx(X: j :)}>.

– REDUCE: take <key: j , values: {(q,B( j, q))|∀q ∈
{1, . . . , Q}}, {(i, k,X(i, j, k))|∀(i, j, k) ∈ idx(X: j :)}>
and emit <i, j, k, q,X(i, j, k)B( j, q)> for each (i, j, k)

∈ idx(X: j :) and q ∈ {1, . . . , Q}.

The previous HaTen2-DRN method performs the n-
mode vector Hadamard product X∗̄2bT

q for Q times using
nnz(X: j :) + 1 of memory space per reducer; however, our
newmethodHaTen2-DRI performsX∗2BT only once using
nnz(X: j :) + Q of memory space per reducer where Q is
used for storing a column of BT .HaTen2-DRI decreases the
number of jobs significantly without introducing too much
overhead since Q is very small (e.g., 10 or 20).
Integrating products for different factor matrices HaTen2-
DRI also integratesX∗2BT and bin(X)∗3CT computations
into one MapReduce job. This integration is possible
since the dependency of the two operations is removed in
HaTen2-DRN (and, hence in HaTen2-DRI). Thanks to the
integration, the original tensor dataX needs to be read from
disks only once (not twice as in previous methods), and thus,
we further decrease the running time.
MAPREDUCE algorithmTheMapReduce algorithmof the
integrating operation, denoted by I M H P(X,B,C), is as fol-
lows: I M H P(X,B,C)

– MAP: map <i, j, k,X(i, j, k)> on j , < j, q,B( j, q)>

on j , <i, j, k,X(i, j, k)> on k, and <k, r,C(k, r)>

on k such that tuples with the same key are shuffled
to the same reducer in the form of <key: j , val-
ues: {(q,B( j, q))|∀q ∈ {1, . . . , Q}}, {(i, k,X(i, j, k))

|∀(i, j, k) ∈ idx(X: j :)}>, and<key: k, values: {(r,C(k,

r))|∀r ∈ {1, . . . , R}}, {(i, j,X(i, j, k)) |∀(i, j, k) ∈
idx(X:k:)}>.

– REDUCE: take <key: j , values: {(q,B( j, q))|∀q ∈
{1, . . . , Q}}, {(i, k,X(i, j, k))| ∀(i, j, k) ∈ idx(X: j :)}>
and emit<i, j, k, q,X(i, j, k)B( j, q)> for each (i, j, k)

∈ idx(X: j :) and q ∈ {1, . . . , Q}, and take <key: k,
values: {(r,C(k, r))|∀r ∈ {1, . . . , R}}, {(i, j,X(i, j,
k))|∀(i, j, k) ∈ idx(X:k:)}> and emit <i, j, k, r,
C(k, r)> for each (i, j, k) ∈ idx(X:k:) and r ∈
{1, . . . , R}.

Finally, we note that although the two decompositions
Tucker and PARAFAC are different, our HaTen2-DRI uni-
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Table 5 Summary of costs in
the steps of all methods for
computing X×2 B ×3 C in
Tucker decomposition. T
denotes X×2 B

Method Step Intermediate data Jobs

HaTen2-Tucker-Naive X×̄2bT
q nnz(X) + I J K Q

T×̄3cT
r nnz(T) + I QK R

HaTen2-Tucker-DNN X∗̄2bT
q nnz(X) + J Q

Collapse nnz(X)Q 1

T∗̄3cT
r nnz(X)Q + K R

Collapse nnz(X)Q R 1

HaTen2-Tucker-DRN X∗̄2bT
q nnz(X) + J Q

bin(X)∗̄3cT
r nnz(X) + K R

Cross Merge nnz(X)Q + nnz(X)R 1

HaTen2-Tucker-DRI I M H P 2nnz(X) + J Q + K R 1

Cross Merge nnz(X)Q + nnz(X)R 1

Table 6 Summary of costs in
the steps of all methods for
computing X(1)(C � B) in
PARAFAC decomposition. Tr
denotes X×̄2bT

r

Method Step Intermediate data Jobs

HaTen2-PARAFAC-Naive X×̄2bT
r nnz(X) + I J K R

Tr ×̄3cT
r nnz(Tr ) + I K R

HaTen2-PARAFAC-DNN X∗̄2bT
r nnz(X) + J R

Collapse nnz(X) R

Tr ∗̄3cT
r nnz(Tr ) + K R

Collapse nnz(Tr ) R

HaTen2-PARAFAC-DRN X∗̄2bT
r nnz(X) + J R

bin(X)∗̄3cT
r nnz(X) + K R

PairwiseMerge 2nnz(X)R 1

HaTen2-PARAFAC-DRI I M H P 2nnz(X) + J R + K R 1

PairwiseMerge 2nnz(X)R 1

fies them in a general framework of IMHP and merge. As
seen in Algorithms 11 and 12, as well as in Fig. 4, HaTen2-
Tucker-DRI and HaTen2-PARAFAC-DRI differ only in the
merge function (Cross Merge for HaTen2-Tucker-DRI and
PairwiseMerge for HaTen2-PARAFAC-DRI). This gen-
eral framework allows easier extension of the method for
other algorithms, as well as simple maintenance of the code.

3.2.5 Cost of HaTen2

We present the costs of the steps of all HaTen2 methods in
terms of the intermediate data size, the number of MapRe-
duce jobs, and the number of the floating point operations in
Tables 5 and 6. Based on Tables 5 and 6, we compare the total
costs of all the methods in terms of the maximum interme-
diate data size, and the number of total MapReduce jobs in
Tables 3 and 4.We replace nnz(T = X×2B)with nnz(X)Q
according to the estimation of nnz(X ×2 B) in Lemma 4.

Lemma 4 Given a sparse X ∈ R
I×J×K and a fully dense

B ∈ R
J×Q, the first-order Taylor approximation of the num-

ber of nonzeros in X ×2 B is nnz(X)Q.

Proof Let P(Xi jk) be the probability thatXi jk �= 0. Assum-

ing uniform distribution, P(Xi jk) is estimated to be nnz(X)
I J K .

Since B is a fully dense matrix, a nonzero element in Xi :k
fiber, when multiplied with B, appears as Q nonzero ele-
ments in the result tensorX×2 B. Thus, the probability that
there is no element in the (i, k)th fiber of X ×2 B is given
by Q(1 − P(Xi jk))

J = Q(1 − nnz(X)
I J K )J . Then the esti-

mated number of nonzero elements in X ×2 B is given by
(1− (1− nnz(X)

I J K )J )× I QK . Applying the first-order Taylor

expansion of (1+x)n ≈ 1+nx to the equation (1− nnz(X)
I J K )J ,

we get

(

1 −
(

1 − nnz(X)

I J K

)J
)

× I QK

≈
(

1 −
(

1 − J
nnz(X)

I J K

))

× I QK = nnz(X)Q

Note that in Tucker decomposition,HaTen2-Tucker-DRI
which contains all the proposed ideas, has the minimum
intermediate data size. In PARAFAC, the intermediate data
size of HaTen2-PARAFAC-DNN seems smaller than that of
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HaTen2-PARAFAC-DRI. However, HaTen2-PARAFAC-
DNN has a lower scalability since the matrix Tr becomes
dense, and thus, Tr ∗̄3cT

r might raise an out of memory error.
In contrast,HaTen2-PARAFAC-DRI scales well by exploit-
ing the sparsity of real-world tensors with the idea described
in Sects. 3.2.3 and 3.2.4. For both decompositions,HaTen2-
DRI has the minimum number of jobs.

3.3 Extensions of HATEN2 for nonnegativity constraints

In this section, we extend HaTen2 for nonnegativity con-
straints. We first propose HaTen2-PARAFACNN, a distrib-
uted nonnegative PARAFAC decomposition whose single-
machine version is shown in Algorithm 3. Then, we pro-
pose HaTen2-TuckerNN, a distributed nonnegative Tucker
decomposition whose single-machine version is shown in
Algorithm 4. Similar to the standard PARAFAC and Tucker,
the challenges in designing distributed nonnegative factoriza-
tion algorithms are computingX(1) (C � B) andX×2BT ×3

CT , respectively, which incur the intermediate data explo-
sion problem. Using the same ideas presented in Sect. 3, we
reduce the size of the intermediate data as well as the number
of the total jobs.

3.3.1 HaTen2-PARAFACNN

MapReduce Algorithm for HATEN2-PARAFACNN. Up-
dating each factor of A, B, and C in lines 3, 5, and 7 of
Algorithm 3 requires four computational steps:

<Updating factor A>

– Step 1: M1 ← X(1)(C � B).
– Step 2: M2 ← CTC ∗ BTB.
– Step 3: M3 ← 1

AM2
.

– Step 4: A ← A ∗ M1 ∗ M3.

Step 1 uses the same MapReduce algorithm described
in Sect. 3.2. In Step 2, the operations CT C and BT B uti-
lize the parallel outer product technique of GigaTensor [18].
Since results of both operations are R × R matrices and R
is small, Hadamard product becomes straightforward. Step 3
computes A ∗ M2 where M2 is CTC ∗ BTB. Using the dis-
tributed cache multiplication described in GigaTensor [18],
each machine receives M2 and calculates each row of the
result matrix 1

AM2
with the following map-only job.

– MAP-3: map <i,A(i, :)> on i and calculate the i th row
of 1

AM2
with distributively cachedM2 so that the i th row

of 1
AM2

is produced by each mapper.

Step 4 computes the Hadamard product of the three matri-
ces A,M1, and M3.

– MAP-4: map <i,A(i, :)>, <i,M1(i, :)>, and <i,
M3(i, :)> on i such that tuples with the same i are shuf-
fled to the same reducer in the form of <i, {(A(i, j),
M1(i, j),M3(i, j)|∀ j)}>.

– REDUCE-4: take <i, {(A(i, j),M1(i, j),M3(i, j)|∀ j)}
>, and emit <i,A(i, :) ∗ M1(i, :) ∗ M3(i, :)>.

3.3.2 HaTen2-TuckerNN

MapReduce Algorithm for HATEN2-TuckerNN. Updat-
ing each factor of A, B, and C in lines 3, 5, and 7 of
Algorithm 4 requires five computational steps:

<Updating factor A>

– Step 1: M1 ← X ×2 BT ×3 CT .
– Step 2: M2 ← (X ×2 BT ×3 CT )(1)GT

(1).

– Step 3: M3 ← (G ×2 BTB ×3 CTC)(1)GT
(1).

– Step 4: M4 ← 1
AM3

.
– Step 5: A ← A ∗ M2 ∗ M4.

Step 1 uses the same MapReduce algorithm as described
in Sect. 3.2. Step 2 multiplies (X ×2 BT ×3 CT )(1) and
GT

(1) which requires a similar MapReduce job of Step 3 in

HaTen2-PARAFACNN. In Step 3, the operations BTB and
CTC utilize the parallel outer product technique of GigaTen-
sor [18] as explained in Step 2 of HaTen2-PARAFACNN.
Since the sizes of the core tensorBTB, andCTC are small,we
perform (G×2BTB×3CTC)(1)GT

(1) in a localmachine. Steps
4 and 5 are the same as those in Steps 3 and 4 of HaTen2-
PARAFACNN, respectively. Updating the core tensor G in
line 9 of Algorithm 4 requires similar computation steps.

4 Experiment

In this section, we present experimental results to answer the
following questions:

Q1 What is the performance of HaTen2-DRI compared
with other methods?

Q2 How well does HaTen2-DRI scale up with various fac-
tors (nonzeros, dimensionality, density, core tensor size,
order, and machines)?

After describing the experimental settings in Sect. 4.1, we
present the scalability results in Sect. 4.2 to answer Q1 and
Q2.

4.1 Experimental settings

Wecompare our finalmethodHaTen2-DRIwith othermeth-
ods (HaTen2-Naive,HaTen2-DNN,HaTen2-DRN) aswell
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as the Tensor Toolbox [21], the state-of-the-art tensor com-
putation package for a single machine.

4.1.1 Machines

HaTen2 is run on aHadoop cluster with 40machines where
each machine has a quad-core Intel Xeon E3 1230v3 3.3Ghz
CPU, 32 GB RAM, and 12 Terabytes disk. The Tensor Tool-
box is run on a machine from the Hadoop cluster.

4.1.2 Dataset

The tensor dataset used in our experiments is summarized in
Table 7, with the following details.

– Freebase-sampled: sampled RDF triples (subject entity,
object entity, relation) where the entries are related with
music, book, tv shows, film, people, and sport from Free-
base [19].

– Phonecall: real-world phone call history data (who-calls-
whom) containing (sender, receiver, date) triples (e.g.,
‘1234,’ ‘5678,’ ‘06-DEC-07’) in 2007-12-01 to 2008-1-
31.

– NELL: real-world knowledge base data containing (noun
phrase 1, noun phrase 2, context) triples (e.g., ‘George
Harrison,’ ‘guitars,’ ‘plays’) from the ‘Read the Web’
project [1]. NELL-2 data are the filtered data fromNELL
by removing entries whose values are below a threshold.

– DARPA1998: 1998 DARPA intrusion detection evalu-
ation dataset from MIT Lincoln Laboratory [20]. We
translate the packet data into a 3-way tensor which is
composed of (source IP, destination IP, time) triples.
For example, a triple (‘202.77.162.213,’ ‘172.16.114.50,’
‘1998-06-19 08:49:21,’ ‘1’) corresponds to a packet sent
from 202.77.162.213 to 172.16.114.50 at 08:49:21, June
11, 1998.

– Random: synthetic random tensor of size I × I × I .
The size I varies from 103 to 108, the number of nonze-
ros varies from 104 to 1010, and the density varies from
10−15 ∼ 10−5.

4.2 Scalability

To answer the questionsQ1 andQ2, we compare themachine
and the data scalabilities of HaTen2-DRI with those of other
methods. Since the Tensor Toolbox does not provide nonneg-
ative tucker decomposition, we omit scalability experiments
of the Tensor Toolbox. Ta
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Fig. 7 Data scalability of our proposed HaTen2-DRI compared
to other methods, for PARAFAC decomposition. The datasets are
explained in detail at Sect. 4.1. o.o.m.: out of memory. Note that our

best methodHaTen2-DRI decomposes 10 ∼ 100× larger data than the
Tensor Toolbox. a Nonzeros and dimensionality, b Density, c Core, d
Order

4.2.1 Data scalability

Data scalability is measured for the following four aspects:
number of nonzeros and dimensionality, density, core tensor
size, and order. We change the input tensor in terms of each
aspect one by one, while fixing other aspects, and measure
the running time using all the 40 machines in the cluster.
Since the HaTen2-Naive method cannot process even a 104

scale tensor (Figs. 1a, 7a), HaTen2-Naive is omitted from
the density and core scalability experiments (Figs. 1b, c, 7,
8 and 9b, c).
Nonzeros and dimensionality We increase the dimensional-
ity I = J = K of modes from 103 to 108. The number of
nonzeros is set to dimensionality ×10. For Tucker decom-
position, the size P × Q × R of the core tensor is fixed
to 10 × 10 × 10. For PARAFAC decomposition, the rank
R is set to 10. As shown in Figs. 1a, 7, 8 and 9a, our best
method HaTen2-DRI shows the best result: HaTen2-DRI
analyzes 108 scale tensor the most quickly. HaTen2-Naive
and HaTen2-DNN failed for tensors with size beyond 103

and 107, respectively. AlthoughHaTen2-DRN also analyzes
108 scale tensor, the running time is 1.7 times slower than
that of HaTen2-DRI.
Density We increase the density (= number of nonzeros /
number of all possible elements) of input tensor from 10−9

to 10−5; accordingly, the number of nonzeros becomes 1 bil-
lion to 1 trillion, and they take 20 MB to 196 GB disk space.
The dimensionality of each mode is set to 105 (I = J = K ).
For Tucker decomposition, the size P × Q × R of the core
tensor is fixed to 10×10×10. For PARAFACdecomposition,
the rank R is set to 10. As shown in Figs. 1b, 7, 8 and 9b, our
method HaTen2-DRI analyzes up to 1000× denser tensors
than existing method for nonnegative PARAFAC decompo-
sition and the running time is the fastest compared with other
variants of HaTen2.
Core tensor size We increase the core size of a random ten-
sor of size 106 × 106 × 106 with 107 nonzeros, and measure
the running time. For Tucker decomposition, the core ten-
sor size increases from 10 × 10 × 10 to 40 × 40 × 40 or
80 × 80 × 80; for PARAFAC, the rank R increases from 10

to 40 or 80. For normal PARAFAC and Tucker decomposi-
tions, as shown in Figs. 1c and 7c,HaTen2-DRI scales well,
providing the best performance for all the core sizes. When
the core size is 80, HaTen2-DRI outperforms the second
best method (HaTen2-DRN) by 2.25 times. For nonnegative
PARAFAC and Tucker decompositions, as shown in Figs. 8c
and 9c, HaTen2-DRI scales well up to core size 40. Note
that in Fig. 9c,HaTen2-DRI decomposes a tensor with a 4×
larger core tensor compared to the Tensor Toolbox.
Order We increase the order (=number of modes) of a ran-
dom tensor of size 106 × 106 × 106 with 107 nonzeros, and
measure the running time. For normal PARAFAC and Tucker
decompositions, as shown in Figs. 1d and 7d, HaTen2-DRI
scales well, providing the best performance among variants
of HaTen2 for all the orders. Similar scalability is observed
for nonnegative PARAFAC and Tucker decompositions, as
shown in Figs. 8d and 9d, respectively.

4.2.2 Machine scalability

To measure the machine scalability, we increase the number
of machines from 10 to 40, and report T10/TM where TM is
the running time with M machines. We use the NELL tensor
data of size 26 M ×26 M ×48 M containing 144 M nonze-
ros. For Tucker and nonnegative Tucker decomposition, the
core tensor size is set to 10 × 10 × 10. For PARAFAC and
nonnegative PARAFAC decomposition, the rank size is set
to 10. As shown in Fig. 10, our best method HaTen2-DRI
scales near linearly in the beginning, while the performance
flattens as the number of machines grows due to overheads
required in distributed systems (e.g., synchronization time,
JVM loading time). Note that the machine scalability of
Tucker is better than that of PARAFAC. Since Tucker is more
complex and involves a lager amount of computations com-
pared with PARAFAC, increasing the number of machines
is more effective in Tucker. Due to many sub-operations
performed in a local machine, the machine scalabilities of
nonnegativity-constrained Tucker and PARAFAC decompo-
sitions are smaller than those of the unconstrained versions.
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Fig. 8 Data scalability of our proposed HaTen2-DRI compared to
other methods, for nonnegative Tucker decomposition. The datasets are
explained in detail at Sect. 4.1. o.o.m.: out of memory. Among the vari-

ants of HaTen2, HaTen2-DRI is the fastest, and analyzes 10× denser
data than HaTen2-DNN does. a Nonzeros and dimensionality, b Den-
sity, c Core, d Order

Fig. 9 Data scalability of our proposed HaTen2-DRI compared to
othermethods, for nonnegative PARAFACdecomposition. The datasets
are explained in detail at Sect. 4.1. o.o.m.: out of memory. Note that
HaTen2-DRI decomposes 10 ∼ 1000× larger data than the Tensor
Toolbox and HaTen2 decomposes a tensor with a 4× larger core ten-

sor compared to the Tensor Toolbox. Among the variants of HaTen2,
HaTen2-DRI is the fastest, and analyzes 10× larger data thanHaTen2-
DNN does. a Nonzeros and dimensionality, b Density, c Core, d Order

Fig. 10 Machine scalability of HaTen2-PARAFAC-DRI, HaTen2-
PARAFACNN-DRI, HaTen2-Tucker-DRI, and HaTen2-TuckerNN-
DRI with regard to the ‘Scale Up’ factor T10

TM
, where TM is the running

time with M machines. Note that in all cases, HaTen2-DRI scales
near linearly in the beginning, while the performance flattens as more
machines are added due to overheads in distributed systems

5 Discovery

In this section, we present discovery results to answer the
following questions:

Q1 What are the discoveries on real-world tensors?
Q2 What are the differences between PARAFAC and

Tucker decompositions on real-world tensors?

We apply HaTen2 to four large-scale real-world tensors:
Freebase-sampled, DARPA1998, Phonecall, and NELL-2.

5.1 Freebase-sampled

Freebase [19] is a knowledge base dataset in the RDF
(Resource Description Framework) format, composed of
(subject entity, object entity, relation) triples. Below, we
explain construction of a tensor from Freebase and inter-
esting concepts discovered by HaTen2.
Building Freebase-sampled tensor We build a Freebase-
sampled tensor from the full Freebase dataset [19]. First,
we extract relations about several important topics including
‘Music,’ ‘Books,’ ‘People,’ ‘Film,’ ‘TV,’ and ‘Sports.’ Then,
we remove the triples containing literal entities (e.g. (John,
‘John,’ name)) since they represent definitions which do not
help reveal latent concepts.
Concept discovery We find several latent concepts in the
Freebase-sampled tensor by applying HaTen2-Tucker and
HaTen2-PARAFAC on it. We choose the top-k highest val-
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Table 8 Concept discovery result from HaTen2-PARAFAC on the Freebase-sampled dataset

Concepts Subject entity Object entity Relation

Concept1:‘Pop/Rock
Albums’

Pop Music The Day Hell Broke Loose at Sicard
Hollow

ns:music.album_release_type.album

Alternative rock Enigma variations ns:music.artist.track

Rock music A bunch of stuff ns:music.genre.album

The fifteenth porn cut ns:music.artist.album

Concept2: ‘Expert’ Actor Lia scott price

Film Producer Eric idle ns:people.profession

Comedian Barbra Streisand People_with_this_profession

Singer Madonna

Concept3:‘Classic’ Johann Sebastian Bach Concerto for oboe & violin in D minor,
BWV 1060: II. Adagio

ns:music.artist.album

Pyotr Ilyich Tchaikovsky Prelude No. 10 in E minor, BWV 855 ns:music.artist.track_contribution

John Eliot Gardiner Choral: ‘Ach mein herzliebes Jesulein’ ns:music.genre.album

Heinrich Schiff Cello Suite No.4 Es-dur BWV 1010: III.
Courante

ns:music.album_release_type.album

Table 9 Discovered factors from HaTen2-Tucker on the Freebase-sampled dataset

Subject S1: instruments Subject S2: jobs Subject S3: marriage

Subject entity Piano Actor

Guitar Film score composer Marriage

Electronic keyboard Singer

Bass Screenwriter

Object O1: recording contributors Object O2: persons Object O3: spouse

Object entity Pedro Rousseau O. Z. Livaneli Helene Belmar Julius & William Safire

Yann Tiersen Eric Idle Beverly McKittrick & Jackie Gleason

Ari Hest Jay Chou Kathleen Garman & Jacob Epstein

Krischan Frehse Haylar Garcia Tyrone Willingham & Kim

Relation R1: professionalism Relation R2: marriage Relation R3: book

Relation ns:book.newspaper_issue.publication_date

ns:people.profession ns:people.marriage_union_type ns:book.poetic_verse_form.poems_of_this_form

.people_with_this_profession .unions_of_this_type ns:book.magazine.genre

ns:book.book_edition.interior_illustrations_by

ued elements from each column of each factor. Table 8 shows
the results by HaTen2-PARAFAC with rank 10. There are
several concepts (e.g., ‘Pop/Rock Music Albums,’ ‘Expert,’
and ‘Classic’) each of which contains groups of subjects,
objects, and relations. Note that each subject group is tightly
coupled only with the corresponding object and relation
groups, due to the diagonal core tensor of PARAFAC. On the
other hand, Tucker decomposition gives more diverse con-
cepts determined by cross combinations of various groups.
Table 9 shows factors by HaTen2-Tucker with the core size
10 × 10 × 10. We find several groups for each mode: e.g.,
for the ‘subject’ mode, we find the groups of ‘Instruments,’

‘Jobs,’ and ‘Marriage.’ Table 10 shows concepts each of
which combines groups from the subject, the object, and
the relation factors. The first concept ‘Musician’ consists of
the subject group S1 (‘Instruments’), the object group O1
(‘Recording Contributors’), and the relation group R1 (‘Pro-
fessionalism’); the second concept ‘Expert’ consists of the
subject group S2 (‘Jobs’), the object group O2 (‘Persons’),
and the relation group R1 (‘Recording Contributors’). Note
that the object group R1 appears in both of the concepts,
exemplifying the Tucker’s ability of finding concepts from
various, possibly overlapping groups. The last concept ‘Mar-
ried Couple’ consists of the subject group S3 (‘Marriage’),
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Table 10 Concept discovery result from HaTen2-Tucker on the Freebase-sampled dataset

Concepts Subject entity Object entity Relation

Concept1:(S1,O1,R1) ‘Musician’ Piano Pedro Rousseau

Guitar Yann Tersen ‘ns:people.profession

Electronic keyboard Ari Hest .people_with_this_profession’

Bass Krischan Frehse

Concept2: (S2,O2,R1) ‘Expert’ Actor O. Z. Livaneli

Film score composer Eric Idle ‘ns:people.profession

Singer Jay Chou .people_with_this_profession’

Screenwriter Haylar Garcia

Concept3: (S3,O3,R2) ‘Married Couple’ Helene Belmar Julius & William Safire

Marriage Beverly McKittrick & Jackie Gleason ‘ns:people.marriage_union_type

Kathleen Garman & Jacob Epstein .unions_of_this_type’

Tyrone Willingham & Kim

the object group O3 (‘Spouse’), and the relation group R2
(‘Marriage’).

5.2 DARPA1998

DARPA1998 is an intrusion detection evaluation dataset
provided by MIT Lincoln Laboratory [20]. They provide
packet dump files containing network traffic logs during
seven weeks and a list of network-based attacks. The list of
attack information contains descriptions of attacks such as
source IPs, destination IPs, attack types, and times. Table 11
shows a summary of the attack information. More detailed
descriptions are in [20].
Building network traffic tensor To analyze network traffic
logs provided in the DARPA1998 dataset, we convert net-
work packet dump data into a 3-way tensor. First, we extract
source and destination IP addresses, and a timestamp for each
packet. Next, we map the IP addresses and the timestamps
onto natural numbers. Since a timestamp has a continuous
value, we discretize it into bins of length 0.001 second. Last,
we build a 3-way tensor with (‘Source IP,’ ‘Destination IP,’
‘Time’) triples where each element in the tensor represents
the number of packets for the corresponding triple.
Network traffic pattern discovery By applying HaTen2 on
the tensor constructed above, we discover several interesting
patterns summarized in Fig. 11. Table 12 shows discov-
ery results by HaTen2-PARAFAC with rank 10. We find
several patterns (e.g., ‘neptune attack,’ ‘Heavy interaction,’
and ‘Normal traffic’) from factor groups that contain source
IP, destination IP, and time. For each group, we present IP
addresses and time that have extraordinarily high scores. In
the ‘neptune attack’ and ‘Heavy interaction’ patterns, scores
are concentrated on certain IP addresses and times sincemas-
sive packets are exchanged between several machines at a

Table 11 Descriptions of attacks that occur in the DARPA1998 net-
work traffic logs

Description

Attacker IP 135.13.216.191

10.20.30.40

230.1.10.20

194.7.248.53

…

Victim IP 172.16.112.50 (pascal)

172.16.113.50 (zeno)

172.16.114.50 (marx)

Duration 1998-06-01–1998-07-17

Attack type Denial of service: back, land, neptune, pod, smurf,
syslog, teardrop

Sweeping: ip sweep, port sweep

Buffer overflow: eject, ffb, format, imap

Guessing password: dict, guest

etc: ftp-write, loadmodule, nmap, perlmagic, phf …

certain point. On the other hand, in the ‘Normal traffic’ pat-
tern, scores are spread over all IP addresses and times, and
the score gaps between entries are small. We applyHaTen2-
Tucker to the same tensor; we discover patterns for each
factor group and find network traffic patterns by combining
the factor groups. Table 13 shows several factors discov-
ered by HaTen2-Tucker with the core size 10 × 10 × 10.
For the ‘source IP’ mode, we find ‘neptune attacker,’ ‘port
sweep attacker’ and ‘Various attacker’ groups. The ‘Vari-
ous attacker’ group performs various types of attacks several
times. Similarly, we find victim groups and attack time
groups from the ‘Destination IP’ mode and the ‘Time’ mode,
respectively. Since packets are exchanged between attackers
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Fig. 11 Network traffic pattern discovery result by HaTen2 on
DARPA1998, an intrusion detection dataset. Group1 shows an attack
pattern where several attackers perform malicious attacks like denial of

service to the victims at a certain point. Group2 shows an interaction
pattern where two machines intensively communicate with each other
at a certain point. Group3 shows a normal traffic pattern

and victims, D3 group consists of attackers though it stands
for the destination IP address. Table 14 shows the discovered
patterns that are combinations of source IP, destination IP,
and time factor groups. The first group ‘Heavy interaction’
consists of the source IP group S1 (‘neptune attacker’), the
destination IP group D1 (‘Victim’), and the time group T1
(‘Specific time’); The second group ‘neptune attack’ con-
sists of the source IP group S1 (‘neptune attacker’), the
destination IP group D1 (‘Victim’), and the time group T2
(‘Specific time’). The third group ‘Various attack’ consists
of the source IP group S3 (‘Various attacker’), the destina-
tion IP group D2 (‘Victim’), and the time group T3 (‘Various
time’). The third group shows various attack patterns per-
formed by several attackers at several occasions. Note that
the source IP group S1 and the destination IP group D1 are
shared by Pattern1 and Pattern2. Since Tucker provides var-
ious concepts by cross combinations of factor groups, some
factor groups appear in multiple concepts. We also apply the
nonnegativity-constrained Tucker and PARAFAC using our
HaTen2-TuckerNN and HaTen2-PARAFACNN. The over-
all result is similar to that of the unconstrained versions of
Tucker and PARAFAC. However, the entries that have neg-
atively high scores in the unconstrained versions are scored
positively in the nonnegative tensor decompositions. Since
all entries have values larger than zero in nonnegative ten-
sor decomposition, the importance between entities is easily
compared. Comparing to the ground truth, we successfully
detect attackers and victims in the network traffic logs. For
example, we find the following attacker groups: ‘neptune’
attackers, ‘port sweep’ attackers, and attackers who perform
various types of attacks. Note that we detect the exact attack
time for the ‘neptune’ attack, one of the denial of service
attack where attackers send lots of packets to victims inten-
sively at a certain time.

5.3 Phonecall

Phonecall is a real-world phone call history data from an
anonymous provider, containing the information of senders,

receivers, dates, times, and durations. Below, we explain the
construction of a tensor from the Phonecall data and inter-
esting concepts discovered by HaTen2.
Building Phonecall tensor Tobuild a 3-way tensor,we extract
sender, receiver, and date entries from the Phonecall dataset,
and map them to natural numbers. Then, we build a 3-way
tensor with (‘sender,’ ‘receiver,’ ‘date’) triples where each
element in the tensor represents the number of calls for the
corresponding triple.
Phone call pattern discovery Table 15 shows discovered fac-
tor groups after applying HaTen2-Tucker on the Phonecall
dataset. We discovered three groups each of which is a com-
bination of factor groups. Figure 12 shows call patterns of
those groups, and Table 16 shows in more details how they
are composed of. In Table 15, for the sender mode, we find
‘Telemarketer,’ ‘Senders in a closed group’ and ‘Normal’
groups. Corresponding to the ‘Telemarketer’ group, we find
the ‘Victim’ group in the receiver mode. The members of
the ‘Telemarketer’ group call over all the other people, but
never receive calls from anyone. Figure 13 shows the tele-
phone traffic pattern of a telemarketer with ID 19893602
and a victim with ID 3517446. Note that the telemarketer
calls 218,725 people 46 times on average, and 3,367 times
at maximum. The amount of received calls is zero, because
they never receive calls from anyone. On the other hand,
the members of the ‘Victim’ group receives many calls from
telemarketers, while receiving few calls from normal peo-
ple. For example, in Fig. 13b, a receiver with ID 3517446
receives 1–10 calls from normal people, but more than 3,000
calls from a telemarketer. These ‘Telemarketer’ and ‘Victim’
groups form the ‘Telemarketing’ group as shown in Table 16.
Another group called the ‘Closed group’ consists of two sub-
groups: ‘Senders in a closed group’ for the sender mode and
‘Receivers in a closed group’ for the receiver mode. In this
group, members of the ‘Senders in a closed group’ send a
large amount of traffics to the members of the ‘Receivers in
a closed group.’ The last group we discover is the ‘Normal’
group. In the ‘Normal’ group, each member interacts with a
small number of people in the group.
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Table 12 Network traffic pattern discovery result by HaTen2-PARAFAC on the DARPA1998 dataset

Traffic pattern Source IP Destination IP Time Description

Pattern1:‘Neptune attack’ 10.20.30.40 172.16.112.50 1998-07-02, 10:16 A.M. Neptune: Syn flood denial of
service on one or more ports

Pattern2:‘Heavy interactions’ 135.13.216.191 172.16.112.50 1998-07-01, 09:46 A.M. There were heavy interactions
between 2 machines through
telnet

Pattern3:’Normal traffic’ 172.16.112.194 194.27.251.21 1998-06-15, 03:27 P.M. Normal traffic logs

172.16.112.50 194.7.248.153 1998-06-30, 11:57 A.M.

172.16.114.148 197.218.177.69 1998-07-13, 04:56 P.M.

Table 13 Discovered factors from HaTen2-Tucker on the DARPA1998 dataset

Source IP S1: ‘neptune’ attacker Source IP S2: ‘port sweep’ attackers Source IP S3: various attackers

Source IP 135.13.216.191 194.7.248.153 135.8.60.182

10.20.30.40 194.27.251.21 197.182.91.233

230.1.10.20 197.218.177.69

Destination IP D1: victim Destination IP D2: victims Destination IP D3: attackers

Destination IP 172.16.112.50 194.7.248.153 172.16.114.148

172.16.113.50 194.27.251.21

172.16.112.50 197.218.177.69

Time T1: specific time Time T2: specific time Time T3: various times

Time 1998-07-01, 09:46 A.M. 1998-07-09, 12:10 P.M. 1998-06-11, 2:05 P.M.

1998-07-09, 12:22 P.M. 1998-06-12, 11:56 A.M.

1998-07-09, 12:22 P.M. 1998-07-08, 11:16 P.M.

Table 14 Network traffic pattern discovery result by HaTen2-Tucker on the DARPA1998 dataset

Traffic pattern Source IP Destination IP Time Description

Pattern1:(S1, D1, T1) ‘heavy
interaction’

135.13.216.191 172.16.112.50 1998-07-01, 09:46 A.M. There were heavy interactions between 2
machines through telnet

10.20.30.40

230.1.10.20

Pattern2:(S1, D1, T2) ‘neptune
attack’

135.13.216.191 172.16.112.50 1998-07-09, 12:10 P.M. Neptune: Syn flood denial of service on
one or more ports

10.20.30.40 1998-07-09, 12:22 P.M.

230.1.10.20 1998-07-09, 12:23 P.M.

Pattern3:(S3, D2, T3) ‘various
attack’

135.8.60.182 194.7.248.153 1998-06-11, 2:05 P.M. Several attackers perform various types of
attacks several times

197.182.91.233 172.16.113.50 1998-06-12, 11:56 A.M.

197.218.177.69 172.16.112.50 1998-07-08, 11:16 P.M.

Lastly, we examine the factors for the date mode. Fig-
ure 14 shows patterns of the four date-mode factors described
in Table 15. For the date mode, we find ‘Normal,’ ‘Spike,’
‘Periodic,’ and ‘Christmas’ groups. Factor1 (‘Normal’ fac-
tor) shows the normal pattern having similar scores over
most days, while having high scores before special events

such as Christmas and the New Year’s Day. This result
makes sense because people usually give words of bless-
ing to their friends right before such special days. Factor2
(‘Spike’ factor) has an abnormal peak point at 2007-12-07.
Factor3 (‘Periodic’ factor) shows a periodic pattern, and Fac-
tor4 (‘Christmas’ factor) reaches its positive peak right before
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Table 15 Discovered factor groups by HaTen2-Tucker on the Phonecall dataset

Sender S1: telemarketer Sender S2: senders in a closed group Sender S3: normal

Sender_id 19893602 5188590 7145415

19922918 5188591 8349492

6657916 5188592 1944847

Receiver R1: victim Receiver R2: receivers in a closed group

Receiver_id 3517446 5188590

3517450 5188591

4605892 5188592

Date D1: normal Date D2: spike Date D3: periodic Date D4: christmas

Date 21-Dec-07 07-Dec-07 07-Dec-07 21-Dec-07

03-Jan-08 09-Dec-07 22-Dec-07

04-Jan-08 27-Jan-08 23-Dec-07

Fig. 12 Discovered sender and receiver groups by HaTen2 on the
Phonecall dataset. We find telemarketers who call many people a lot,
but never receive calls. In the closed group, a large amount of traffics are

internally concentrated. There is also a normal group where a person
interacts with a small number of people

Table 16 Phone call pattern discovery result by HaTen2-Tucker on
the Phonecall dataset

Phone call Pattern Sender Receiver Date

Pattern1:(S1, R1, D1)
‘telemarketing’

19893602 3517446 21-Dec-07

19922918 3517450 03-Jan-08

6657916 4605892 04-Jan-08

Pattern2:(S2, R2, D3)
‘closed group’

5188590 5188590 07-Dec-07

5188591 5188591 09-Dec-07

5188592 5188592 27-Jan-08

Pattern3:(S3, R3, D1)
‘normal’

7145415 3517446 21-Dec-07

8349492 3517450 03-Jan-08

1944847 4605892 04-Jan-08

Christmas and negative peak on 2007-12-07. The ‘Normal’
factor is contained in the ‘Normal’ and ‘Telemarketing’ pat-
tern inTable 16, since telemarketers callmanynormal people.
The ‘Periodic’ factor is contained in the ‘Closed group’ pat-
tern since the members in the group interacts with each other
periodically.

5.4 NELL-2

NELL is a knowledge base dataset containing (‘Noun Phrase
1,’ ‘Noun Phrase 2,’ ‘Context’) triples from the ‘Read the
Web’ project [1].Wefilter theNELLdata by removing entries
whose values are below a threshold; the result is a tensor
named NELL-2 whose size is 14545× 14545× 28818 with
76 millions of nonzeros.
Concept discovery We discover latent concept groups of
NELL-2 by applying HaTen2-PARAFAC with rank 20 and
HaTen2-Tucker with the core tensor size 20 × 20 × 20.
Table 17 shows the concept discovery results from HaTen2-
PARAFAC. We discovered several concepts: e.g., ‘Health
Care System,’ ‘File Transfer,’ ‘Internet Service,’ and ‘Shop-
ping.’ In PARAFAC decomposition, because the core tensor
is diagonal, each ‘Noun Phrase 1’ group is combined only
with a ‘Noun Phrase 2’ group and a ‘Context’ group. On
the other hand, Tucker decomposition provides more diverse
concepts compared with PARAFAC decomposition: e.g., a
‘Noun Phrase 2’ group may be combined with several ‘Noun
Phrase 1’ groups and ‘Context’ groups. Table 18 shows the
groups in factors from Tucker decomposition: e.g., ‘Health,’
‘Credit,’ ‘Network,’ ‘Algorithm,’ ‘Project,’ and ‘Information’
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Fig. 13 Telephone traffics of
one of telemarketers with ID
19893602 and one of victims
with ID 3517446. The
telemarketer calls over all
people, but never receives calls
from any other. The victim
receives lots of calls from the
telemarketer while receiving a
few calls from normal people

Fig. 14 Discovered patterns for
the date factors by HaTen2 on
the Phonecall dataset. Factor1
shows a normal pattern that has
high scores right before
Christmas and the New Year’s
Day, and remains constant for
the other days; Factor2 has an
abnormal peak point on
2007-12-07; Factor3 shows a
periodic pattern; Factor4
reaches its positive peak right
before Christmas and negative
peak on 2007-12-07

in the ‘Noun Phrase 1’ mode. Table 19 shows the discovered
concepts each of which combines the groups from the ‘Noun
Phrase 1,’ the ‘Noun Phrase 2,’ and the ‘Context’ factors. The
first concept represents ‘Health Care System’which contains
the ‘Noun Phrase 1’ group S1 (‘Health’), the ‘Noun Phrase 2’
group O2 (‘Service’), and the ‘Context’ group C1 (‘Care’).
Note that a groupof a factor appears in several concept groups
in Tucker decomposition. For example, the ‘Noun Phrase 2’
group O2 appears in the first, the second, and the third con-
cepts; the ‘Context’ group C6 appears in both the second and
the third concepts.

6 Related work

6.1 CP/PARAFAC

Acar et al. [22] use the PARAFAC decomposition in order
to detect epilepsy in brain measurements. In [2], Kolda
and Bader extend the popular HITS algorithm for ranking
web-pages, by incorporating anchor text information to the
hyperlinks, and using PARAFAC in order to derive hubs and
authorities from the data. PARAFAC has also been used in
anomaly detection; [3] and [23] detect network anomalies

Table 17 Concept discovery result using HaTen2-PARAFAC on the
NELL-2 dataset

Noun Noun
Concepts Phrase1 Phrase2 Context

Concept1: health providers ‘np1’ ‘care’ ‘np2’

‘Health Care child systems ‘np1’ ‘insurance’ ‘np2’

System’ skin organizations ‘np1’ ‘and safety’ ‘np2’

Concept2: file protocol ‘np1’ ‘stream’ ‘np2’

‘File Transfer’ hypertext stack ‘np1’ ‘transfer’ ‘np2’

FTP technology ‘np2’ ‘cable’ ‘np1’

Concept3: internet providers ‘np1’ ‘service’ ‘np2’

‘Internet phone web sites ‘np1’ ‘access’ ‘np2’

Service’ application roots ‘np1’ ‘hosting’ ‘np2’

Concept4: discount store ‘np1’ ‘food’ ‘np2’

‘Shopping’ shop service ‘np1’ ‘and nutrition’ ‘np2’

grocery products ‘np1’ ‘supplement’ ‘np2’

in computer network connection logs and specifically [23]
spots anomalies in time-evolving social networks as well.
Last but not least, the PARAFAC decomposition has been
used in community detection, where we have different views
of the same network of people [24], or the network evolves
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Table 18 Discovered factors from HaTen2-Tucker on the NELL-2 dataset

NP S1: Health NP S2: Credit NP S3: Network NP S4: Algorithm NP S5: Project NP S6: Information

Noun Phrase1 health credit internet optimization agency information

child charge phone rankings proposal details

skin bank email listings management news

eye ID contact algorithms activities material

patient account network indexing manager pictures

NP O1: Region NP O2: Service NP O3: Web
search

NP O4: Research NP O5: Loan NP O6: Network

Noun Phrase2 world providers search research loan roots

state system website experience rates speeds

planet service page work mortgage proxies

region insurance industry training lender ports

globe organization performance study refinancing routers

Context C1: care Context C2:
credit

Context C3:
function

Context C4: transfer Context C5:
support

Context C6: service

Context ‘np1’ ‘care’
‘np2’

‘np1’ ‘card’
‘np2’

‘np2’ ‘engine’
‘np1’

‘np1’ ‘stream’ ‘np2’ ‘np2’ ‘project’
‘np1’

‘np1’ service’ ‘np2’

‘np1’ ‘insurance’
‘np2’

‘np1’ ‘report’
‘np2’

‘np2’ ‘returned’
‘np1’

‘np1’ ‘transfer’ ‘np2’ ‘np2’ ‘and
development’
‘np1’

‘np1 ‘access np2

‘np1’ ‘service’
‘np2’

‘np2’
‘management’
‘np1’

‘np2’ ‘results’
‘np1’

‘np1’ ‘communication’
‘np2’

‘np2 ‘funding’
‘np1’

‘np1’ ‘hosting’ ‘np2’

‘np1’ ‘safety’
‘np2’

‘np1’ ‘account’
‘np2’

‘np2’ ‘returns’
‘np1’

‘np1’ ‘protocol’ ‘np2’ ‘np1’
‘sponsoring’
‘np2’

‘np1’ ‘broadband ‘np2

‘np1’ ‘and
fitness’ ‘np2’

‘np1’ ‘debt’
‘np2’

‘np2’ ‘machine’
‘np1’

‘np2’ ‘cable’ ‘np1’ ‘np1’
‘supporting’
‘np2’

‘np1’ ‘infrastructure’
‘np2’

Table 19 Concept discovery
result using HaTen2-Tucker on
the NELL-2 dataset

Noun Noun
Concepts Phrase1 Phrase2 Context

Concept1: (S1, O2, C1) health providers ‘np1’ ‘care’ ‘np2’

‘Health Care System’ child system ‘np1’ ‘insurance’ ‘np2’

skin professionals ‘np1’ ‘service’ ‘np2’

Concept2: (S3, O2, C6) internet providers ‘np1’ ‘service’ ‘np2’

‘Internet Service’ application system ‘np1’ ‘access’ ‘np2’

email professionals ‘np1’ ‘hosting’ ‘np2’

Concept3: (S6, O2, C6) information providers ‘np2’ ‘service’ ‘np1’

‘Information Access’ details system ‘np2’ ‘access’ ‘np1’

news professionals ‘np2’ ‘hosting’ ‘np1’

Concept4: (S4, O3, C3) optimization search ‘np2’ ‘engine’ ‘np1’

‘Web Search Algorithm’ rankings website ‘np2’ ‘returned’ ‘np1’

marketing performance ‘np2’ ‘results’ ‘np1’

Concept5: (S5, O4, C5) agency research ‘np2’ ‘projects’ ‘np1’

‘Research Project grants training ‘np2’ ‘funding’ ‘np1’

Funding’ proposal study ‘np1’ ‘sponsoring’ ‘np2’
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over time, and we are interested in identifying communities
over time [25].

6.2 Tucker

In [26], apart from a highlymemory- efficient Tucker decom-
position algorithm, there is an overviewof the various aspects
of the Tucker decomposition as a data mining tool. The
authors of [27] use a tensor in order to represent multiple
semantic relations (such as ‘synonym’ or ‘antonym’) and
use Tucker as a higher-order generalization of SVD, in order
to perform latent semantic analysis. One of the most widely
used Tucker variation is the so-called higher-order singu-
lar value decomposition (HOSVD) [28] which is a Tucker3
model with additional orthonormality constraints on the fac-
tor matrices. An exemplary work of employing HOSVD is
[29] where the authors provide web search recommendations
to users. HOSVD has been extensively used in Computer
Vision applications [30,31].

6.3 Scalable algorithms for tensor analysis

Bader and Kolda develop efficient algorithms for sparse
tensors [32], where they avoid the materialization of very
large, unnecessary intermediate Khatri–Rao products. Kang
et al. [18] proposed GigaTensor that first uses a distributed
system for PARAFAC decomposition. GigaTensor is simi-
lar to HaTen2-PARAFAC-DRN in this paper; however, in
this work we provide a significant improvement upon [18].
It can be shown that the ways that GigaTensor [18] and
[32] avoid the intermediate data explosion are equivalent;
however, GigaTensor [18] provides an algorithm which is
optimized for the distributed setting. In the preliminary ver-
sion of this paper, Jeon et al. [10] unify the large-scale
Tucker and PARAFAC tensor decomposition algorithms on
MapReduce into a general framework, but do not con-
sider the nonnegativity constraint. Beutel et al. [33] propose
FlexiFaCT, a MapReduce algorithm based on distributed
stochastic gradient descent for PARAFAC and coupled
PARAFAC decompositions. Bro and Sidiropoulos [34] use
Tucker to compress a tensor, then do the PARAFAC decom-
position on the compressed tensor, and finally, decompress
the factors, thus speeding up the PARAFAC decomposition.
An alternative approach, DBN, is introduced in [35] where
the authors use relational algebra to break down the ten-
sor into smaller tensors, using relational decomposition and
thus achieving scalability. Furthermore, [23] introduces Par-
Cube, an approximate and highly paralellizable algorithm
for sparse PARAFAC decomposition. For scalable Tucker
decomposition, there exists several previous works. Kolda
and Sun [26] propose memory-efficient Tucker (MET) for
scalable Tucker decomposition algorithm running on MAT-

LAB. Finally, Erdos and Miettinen introduce a scalable
Boolean tensor decomposition using random walks [36].

7 Conclusion

In this paper, we propose HaTen2, a distributed method for
large-scale tensor decompositions that runs on the MapRe-
duce platform. HaTen2 provides a unified framework to
devise efficient MapReduce algorithms for unconstrained
and nonnegativity-constrained Tucker and PARAFAC tensor
decompositions,which significantly reduces the intermediate
data size and the running time. By careful design and imple-
mentation, HaTen2 decomposes up to 1000× larger tensors
compared to existing methods. Furthermore,HaTen2 scales
up near linearly on the number of machines. By apply-
ing HaTen2, we discover interesting patterns on various
real-world data—knowledge bases, network traffic logs, and
phone call history—with millions of rows, columns, and
entries which were hard to analyze by existing methods.
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