
BePI: Fast and Memory-Efficient Method for Billion-Scale
Random Walk with Restart

Jinhong Jung
Seoul National University

jinhongjung@snu.ac.kr

Namyong Park
Seoul National University

namyong.park@snu.ac.kr
Lee Sael

The State University of New
York (SUNY) Korea

sael@sunykorea.ac.kr

U Kang
Seoul National University

ukang@snu.ac.kr

ABSTRACT
How can we measure similarity between nodes quickly and
accurately on large graphs? Random walk with restart (RWR)
provides a good measure, and has been used in various data
mining applications including ranking, recommendation, link
prediction and community detection. However, existing meth-
ods for computing RWR do not scale to large graphs con-
taining billions of edges; iterative methods are slow in query
time, and preprocessing methods require too much memory.

In this paper, we propose BePI, a fast, memory-efficient,
and scalable method for computing RWR on billion-scale
graphs. BePI exploits the best properties from both prepro-
cessing methods and iterative methods. BePI uses a block
elimination approach, which is a preprocessing method, to
enable fast query time. Also, BePI uses a preconditioned
iterative method to decrease memory requirement. The per-
formance of BePI is further improved by decreasing non-
zeros of the matrix for the iterative method. Through exten-
sive experiments, we show that BePI processes 100× larger
graphs, and requires up to 130× less memory space than
other preprocessing methods. In the query phase, BePI
computes RWR scores up to 9× faster than existing meth-
ods.

Keywords
Random walk with restart; relevance score in graph

1. INTRODUCTION
Identifying node-to-node proximity in a graph is a fun-

damental tool for various graph mining applications, and
has been recognized as an important research problem in
the data mining community [2, 10, 14, 46]. Random walk
with restart (RWR) provides a good relevance score, tak-
ing into account the global network structure [20] and the
multi-faceted relationship between nodes [40] in a graph.
RWR has been successfully utilized in many graph mining

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14-19, 2017, Raleigh, NC, USA
c© 2017 ACM. ISBN 978-1-4503-4197-4/17/05. . . $15.00

DOI: http://dx.doi.org/10.1145/3035918.3035950

Table 1: Table of symbols.

Symbol Definition

G input graph
n number of nodes in G
m number of edges in G
n1 number of spokes in G
n2 number of hubs in G
n3 number of deadends in G
n1i number of nodes in the ith diagonal block of H11

b number of diagonal blocks in H11

s seed node (=query node)
c restart probability
k hub selection ratio

in the hub-and-spoke reordering method [23]
ε error tolerance
A (n× n) adjacency matrix of G

Ann adjacency matrix containing edges
from non-deadend nodes to non-deadend nodes

And adjacency matrix containing edges
from non-deadend nodes to deadend nodes

Ã (n× n) row-normalized adjacency matrix of G

H (n× n) H = I− (1− c)ÃT

Hij (ni × nj) (i, j)-th partition of H
S (n2 × n2) Schur complement of H11

L1,U1 (n1 × n1) LU factors of H11

L̃2, Ũ2 (n2 × n2) incomplete LU factors of S
q,qi (n× 1) starting vector, (ni × 1) i-th partition of q
r, ri (n× 1) relevance vector, (ni × 1) i-th partition of r
|A| number of non-zero entries of a matrix A

tasks including ranking [41], recommendation [28], link pre-
diction [3], and community detection [1, 18, 45].

Existing methods for scalable computation of RWR scores
can be classified into two categories: iterative approaches
and preprocessing approaches. Iterative methods, such as
power iteration [33], compute an RWR score by repeatedly
updating it until convergence. While they require much less
memory space compared to preprocessing methods, they are
slow in the query phase because matrix-vector multiplica-
tions should be performed each time for a different query
node. This makes iterative methods not fast enough for
billion-scale graphs.

On the other hand, preprocessing methods compute RWR
scores using precomputed intermediate matrices. Since pre-
processed matrices need to be computed just once, and then
can be reused, they are fast in the query phase, especially
when they should serve many query nodes. However, ex-
isting preprocessing approaches have high memory require-

http://dx.doi.org/10.1145/3035918.3035950

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Slashdot

W
ikipedia

Baidu

Flickr

LiveJournal

W
ikiLink

Twitter

Friendster

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
)

BePI
Bear

LU

3679x
7935x

(a) Preprocessing time

10
1

10
2

10
3

10
4

10
5

10
6

Slashdot

W
ikipedia

Baidu

Flickr

LiveJournal

W
ikiLink

Twitter

Friendster

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

BePI
Bear

LU

77x
130x

(b) Memory space for preprocessed data

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

Slashdot

W
ikipedia

Baidu

Flickr

LiveJournal

W
ikiLink

Twitter

Friendster

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
)

BePI
GMRES

Power
Bear

LU

10x
3x

9x

5x
3x

4x
2x 3x

(c) Query time

Figure 1: Performance of BePI: (a) and (b) compare the preprocessing time, and the memory space for preprocessed data, respectively,
among preprocessing methods; (c) compares the query time among all tested methods. Bars are omitted if the corresponding experiments
run out of memory or time (more than 24 hours). (a) In the preprocessing phase, BePI is the fastest and the most scalable among all
preprocessing methods. Only BePI successfully preprocesses billion-scale graphs such as Twitter and Friendster datasets. (b) BePI uses
the least amount of space for preprocessed data across all the datasets. Only BePI preprocesses all the datasets, whereas Bear and LU
decomposition fail except for the two smallest ones. (c) In the query phase, BePI computes RWR scores faster than other competitors
over all datasets. Details on these experiments are presented in Section 4.

ments in common, due to the space for the preprocessed
matrices, which makes it difficult to scale them up to billion-
scale real-world graphs such as Twitter or Friendster datasets
(see Table 2).

In this paper, we propose BePI (Best of Preprocessing
and Iteartive approaches for RWR), a fast, memory-efficient,
and scalable method for computing RWR on billion-scale
graphs. BePI addresses the challenges faced by previous
approaches by combining the best of both preprocessing
and iterative methods. BePI uses a block elimination ap-
proach, which is a preprocessing method, to achieve fast
query time. BePI incorporates an iterative method within
the block elimination to decrease memory requirements by
avoiding expensive matrix inversion. The performance of
BePI is further enhanced via matrix sparsification and pre-
conditioning. Through extensive experiments with various
real-world graphs, we demonstrate the superiority of BePI
over existing methods as shown in Figure 1. The main con-
tributions of this paper are the followings:

• Algorithm. We propose BePI, a fast, memory-efficient,
and scalable algorithm for computing RWR on billion-
scale graphs. BePI efficiently computes RWR scores
based on precomputed matrices by exploiting an iter-
ative method, reducing the number of non-zeros of a
matrix, and applying a preconditioner.
• Analysis. We give theoretical guarantees of the accu-

racy of BePI. We also analyze the time and the space
complexities of BePI, and show that the complexities
are smaller than those of the state-of-the art method.
• Experiment. BePI processes 100× larger graphs and

requires 130× less memory space than existing prepro-
cessing methods. Moreover, BePI provides near linear
scalability in terms of preprocessing and query cost.
BePI computes RWR scores up to 9× faster than ex-
isting iterative methods.

The code of our method and datasets used in the paper
are available at http://datalab.snu.ac.kr/bepi. The rest of
the paper is organized as follows. In Section 2, we give
preliminaries on the definition and algorithms of RWR. We
describe our proposed method BePI in Section 3. After
presenting our experimental results in Section 4, we provide
a review on related works in Section 5. We conclude in
Section 6.

u8

u5

u4

u3 u7

u6

u2

u1

0.287

0.171

0.068

0.124

0.124

0.054

0.054

0.118

u1

u2

u3

u4

u5

u6

u7

u8

scorenode

1

2

6

3

4

7

8

5

rank

Figure 2: Example of RWR. In the example, the query node is
u1 and RWR scores w.r.t. u1 are presented in the table. The
RWR scores are utilized for personalized ranking or link recom-
mendation for u1.

2. PRELIMINARIES
In this section, we present the preliminaries on random

walk with restart (RWR) and two different approaches, it-
erative methods and preprocessing methods. Symbols used
in the paper are summarized in Table 1.

2.1 Random Walk with Restart
Given a graph G, a query node s, and a restart probability

c, random walk with restart (RWR) [41] measures proximity
scores r between the query node s and each node on the
graph. RWR leverages the proximities by allowing a random
surfer to move around the graph. Suppose that a random
surfer starts at node s, and takes one of the following actions
at each node:

• Random Walk. The surfer randomly moves to one of
the neighbors from the current node with probability
1− c.
• Restart. The surfer goes back to the query node s

with probability c.

The proximity or the RWR score between a node u and the
query node s is the steady-state probability that the surfer is
at node u after performing RWR starting from node s. If the
proximity is high, we consider that nodes u and s are highly
related, e.g., they are close friends in a social network. Thus,
RWR provides relevance scores between the query node s

http://datalab.snu.ac.kr/bepi

and each node, and it is utilized as a personalized ranking
for the query node s [41].

For example, suppose u1 is the query node as shown in
Figure 2. The RWR scores w.r.t. u1 are presented in the ta-
ble of the figure, and the scores are used for the personalized
ranking for u1. Also, we are able to recommend to friends
for u1 based on the scores. The RWR score of u8 is higher
than that of u6 because u8 is highly correlated to u1 by the
connections with u4 and u5. Thus, u8 will be recommended
to u1 rather than u6 would based on the RWR scores.

RWR scores for all nodes w.r.t. the query node s are
represented as an RWR score vector r which is defined by
the following recursive equation [33, 41] :

r = (1− c)ÃTr + cq (1)

where Ã is the row-normalized adjacency matrix of the graph
G, and q is the starting vector whose entry that corresponds
to the node s is set to 1, and others to 0. From Equation
(1), we obtain the following linear equation:

(I− (1− c)ÃT)r = cq⇔ Hr = cq (2)

where H = I − (1 − c)ÃT. Note that q is an RWR query,
and r is the result corresponding to the query. q is deter-
mined by the query node s, and r is distinct for each RWR
query. RWR is a special case of Personalized PageRank
(PPR) which sets multiple seed nodes in the starting vector
q while RWR sets only one seed node [33].

2.2 Iterative Methods for RWR
Iterative methods update the RWR score vector r itera-

tively. The most well-known method is the power iteration
method [33] which repeatedly updates r as follows:

r(i) ← (1− c)ÃTr(i−1) + cq

where r(i) denotes the vector r at the i-th iteration. The rep-
etition continues until r has converged (i.e., ‖r(i)−r(i−1)‖2 ≤
ε). The vector r is guaranteed to converge to a unique solu-
tion if 0 < c < 1 [27]. Krylov subspace methods [36] are also
used to compute the solution of a linear system shown in
Equation (2). These methods iterate a procedure to search
the solution in the Krylov subspace. Since the matrix H
is non-singular and non-symmetric [27], any Krylov sub-
space method, such as GMRES [37], which handles a non-
symmetric matrix, can be applied to Equation (2). While
these iterative methods do not require preprocessing, they
have expensive query cost especially when there are lots of
queries, since the whole iterations need to be repeated for
each query.

2.3 Preprocessing Methods for RWR
Many real-world applications require RWR scores of any

pair of nodes, e.g., scores between two arbitrary users in
social networks. Hence, quickly computing RWR queries is
important and useful for real-world applications. Prepro-
cessing methods directly calculate r based on precomputed
results to accelerate the query speed. One naive approach
is to compute H−1 as follows:

r = cH−1q.

Once H−1 is obtained in the preprocessing phase, r can be
computed efficiently in the query phase. However, obtain-
ing H−1 is impractical for large graphs because inverting the

matrix is very time-consuming and H−1 is too dense to fit
into memory. Several preprocessing methods were proposed
to alleviate the problem about H−1. Fujiwara et al. [14]
proposed to use matrix factorizations such as QR or LU
factorization to replace H−1 (e.g., H−1 = U−1L−1 if H is
LU factorized). They reordered H based on nodes’ degrees
and community structures to make the inverses of factors
sparse. Shin et al. [38] developed a block elimination ap-
proach called Bear which exploits a node reordering tech-
nique [23] to concentrate non-zeros of H, and uses block
elimination [9] to compute the solution. While these pre-
processing methods compute RWR queries quickly based on
precomputed results, they have scalability issues for pro-
cessing very large graphs because they require heavy com-
putational cost and large memory space caused by matrix
inversion inside the preprocessing phase. That is, matrix
inversion requires O(n3) time and O(n2) space where n is
the dimension of a matrix to be processed. Under those
complexities, if n is greater than a million, it is infeasible to
complete a preprocessing phase based on matrix inversion
and store preprocessed data.

3. PROPOSED METHOD
In this section, we describe our proposed method BePI

for fast, memory-efficient, and scalable RWR computation.

3.1 Overview
Preprocessing methods process relatively large graphs, and

compute RWR scores quickly. However, they cannot handle
very large graphs due to their high memory requirement. On
the other hand, iterative methods scale to very large graphs,
but show slow query speed. In this paper, our purpose is to
devise a fast and scalable algorithm by taking the advan-
tages of both preprocessing methods and iterative methods.

We present a basic version of our method BePI-B, and
two optimized versions: BePI-S and BePI. BePI-B re-
orders nodes based on the characteristics of real-world graphs
and adopts block elimination as a preprocessing method to
reduce query time. Moreover, BePI-B exploits an itera-
tive method within the block elimination approach to pro-
cess very large graphs. BePI-S further improves the per-
formance of the iterative method by sparsifying a matrix in
terms of running time and memory requirement. On top of
that, BePI accelerates the query speed by applying a pre-
conditioner to the iterative method. The main ideas of our
proposed method are summarized as follows:

• BePI-B: exploiting graph characteristics to re-
order nodes and apply block elimination (Section 3.2),
and incorporating an iterative method into block
elimination to increase the scalability of RWR com-
putation (Section 3.3).
• BePI-S: sparsifying the Schur complement to

improve the performance of the iterative method (Sec-
tion 3.4).
• BePI: preconditioning a linear system to make

the iterative method converge faster (Section 3.5).

BePI comprises two phases: the preprocessing phase and
the query phase. In the preprocessing phase (Algorithm 3),
BePI precomputes several matrices which are required by
the query phase. In the query phase (Algorithm 4), BePI
computes RWR scores for each query by exploiting the pre-
computed matrices. Note that the preprocessing phase is

𝐇

(a) Original matrix H

𝐇""

𝐇#" 𝐈

(b) Deadend reordering

𝐇

(c) Hub-and-spoke reordering

𝐇"#

𝐇## 𝐇#"

𝐇$# 𝐇$" 𝐈

𝐇""

(d) Deadend and
hub-and-spoke reordering

Figure 3: The results of node reordering on the Slashdot dataset. (a) is the original matrix H before node reordering. (b) and (c) are
H reordered by deadend reordering and hub-and-spoke reordering, respectively. (d) is H reordered by the hub-and-spoke reordering
method on top of the result of the deadend reordering method. BePI computes RWR scores on the reordered matrix H in (d). H11 in
(d) is a block diagonal matrix.

run once, and the query phase is run for each seed node. To
exploit sparsity of graphs, we save all matrices in a sparse
matrix format such as compressed column storage [12] which
stores only non-zero entries and their locations.

3.2 BePI-B: Exploiting Graph Characteristics
for Node Reordering and Block Elimina-
tion

BePI-B first reorders H = I − (1 − c)ÃT based upon
real-world graph characteristics, and applies block elimina-
tion for efficient RWR computation. Previous works [26, 38,
16] have shown that node reordering methods reduce com-
putational cost of operations based on adjacency matrices
of real-world graphs. For further improvement, we propose
to mix node reordering strategies based on two graph char-
acteristics: 1) deadends, and 2) hub-and-spoke structure.
After reordering nodes, we apply block elimination as a pre-
processing method to reduce query cost.

3.2.1 Node Reordering Based on Deadends and Hub-
and-Spoke Structure

Deadends. Deadends are nodes having no out-going
edges. Many deadends are produced from various sources
such as a page containing only a file or an image in real-world
graphs (see Table 2). Deadends have been used to improve
the performance of graph operations [26]. In this paper, we
reorder nodes based on deadends for efficient RWR compu-
tation. Suppose that an adjacency matrix A is reordered so
that non-deadends and deadends are separated as follows:

A =

[
Ann And

0 0

]
where Ann is a submatrix containing edges from non-deadend
nodes to non-deadend nodes, and And is a submatrix con-
taining edges from non-deadend nodes to deadend nodes.
Then, Equation (2) is represented as follows:

Hr = cq⇔
[
Hnn 0
Hdn I

] [
rn
rd

]
= c

[
qn

qd

]
where Hnn = I− (1− c)ÃT

nn and Hdn = −(1− c)ÃT
nd. Fig-

ure 3(b) presents the example of H reordered by the dead-
end reordering approach. The partitioned solutions rn and
rd are obtained from the following equations:

Hnnrn = cqn (3)

rd = cqd −Hdnrn (4)

Note that the dimension and the number of non-zeros of
Hnn are smaller than those of H. The partitioned solution
rd is easily computed if we have rn. Hence, the deadend re-
ordering approach enables to obtain RWR scores by solving
the linear system in Equation (3) which is smaller than the
original one in Equation (2). One naive method for com-
puting Equation (3) is to invert Hnn, i.e., rn = H−1

nn qn.
However, obtaining H−1

nn is infeasible in very large graphs
because its dimension is still too large to invert. To effi-
ciently solve the linear system in Equation (3), we introduce
another reordering technique based on the hub-and-spoke
structure on top of the deadend reordering approach.

Hub-and-spoke structure. Most real-world graphs have
the hub-and-spoke structure meaning they follow power-law
degree distribution with few hubs (very high degree nodes)
and majority of spokes (low degree nodes) [13]. The struc-
ture is exploited to concentrate entries of an adjacency ma-
trix by reordering nodes as shown in Figure 3(c). The re-
ordered matrix based on the hub-and-spoke structure has
improved the performance of operations on graphs [38]. We
use the hub-and-spoke structure to efficiently solve Equa-
tion (3). Any reordering method based on the hub-and-
spoke structure can be utilized for the purpose; in this paper,
we use SlashBurn [23] because it shows the best performance
in concentrating entries of an adjacency matrix (more details
in Appendix A).

We reorder nodes of the submatrix Ann using the hub-
and-spoke reordering method so that the reordered matrix
contains a large but easy-to-invert submatrix such as a block
diagonal one as shown in Figure 3(c). After reordered by
the deadend approach and the hub-and-spoke reordering
method, H is partitioned as follows:

H =

[
Hnn 0
Hdn I

]
⇔

H11 H12 0
H21 H22 0
H31 H32 I

 (5)

where Hnn is partitioned to

[
H11 H12

H21 H22

]
, and Hdn is parti-

tioned to
[
H31 H32

]
. Figure 3(d) illustrates the example of

the reordered matrix H in Equation (5). Let n1 be the num-
ber of spokes, n2 be the number of hubs (see Appendix A),
and n3 be the number of deadends. n1 and n2 are deter-
mined by the hub-and-spoke reordering method, and n3 is
computed by the deadend reordering method. H11 is an
n1 × n1 matrix, and H22 is an n2 × n2 matrix. H31 is an
n3 × n1 matrix, and H32 is an n3 × n2 matrix. Note that

H11 is block diagonal as shown in Figure 3(d) since Hnn has
the same sparsity pattern as that of the reordered matrix
AT

nn except for the diagonal entries, and the upper left part
of the reordered matrix AT

nn is a block diagonal matrix.

3.2.2 Block Elimination
By plugging Equation (5) into Hr = cq, the linear system

is represented as follows:

Hr = cq⇔

H11 H12 0
H21 H22 0
H31 H32 I

r1
r2
r3

 = c

q1

q2

q3

 . (6)

The partitioned linear system in Equation (6) is solved by
applying block elimination [9]. That is, the RWR solution
vector r is obtained from the following lemma:

Lemma 1 (Block Elimination [9, 38]). The linear sys-
tem in Equation (6) is solved by block elimination, and the
solution r is represented as follows:

r =

r1
r2
r3

 =

 H−1
11 (cq1 −H12r2)

S−1(cq2 −H21(H−1
11 (cq1)))

cq3 −H31r1 −H32r2

 (7)

where S = H22 −H21H
−1
11 H12 is the Schur complement of

H11. Note that the dimension of S is n2 × n2 where n2 is
the number of hubs.

Proof. See Appendix D.

If all matrices in Equation (7) are precomputed, the RWR
score vector r is efficiently calculated, i.e., only matrix vector
multiplications are required for the query computation.

3.3 BePI-B: Incorporating an Iterative Method
into Block Elimination

BePI-B incorporates an iterative method within the block
elimination to compute RWR on very large graphs. Based
on the block elimination approach, the RWR vector r =
[r1, r2, r3]T is obtained by solving the following linear sys-
tems:

H11r1 = cq1 −H12r2 (8)

Sr2 = cq2 −H21(H−1
11 (cq1)) (9)

r3 = cq3 −H31r1 −H32r2 (10)

where S is the Schur complement of H11. Note that those
equations are derived from Equation (7). r3 is easily ob-
tained from r1 and r2 based on Equation (10). r1 is also
easily computed if we have r2, because H11 is block diag-
onal and consists of small blocks; hence, H11 is easy-to-
invert (i.e., r1 = H−1

11 (cq1−H12r2)). However, on very large
graphs, inverting the Schur complement S is infeasible be-
cause the dimension of S is large (see Table 2). Hence, com-
puting r2 in Equation (9) with S−1 is impractical on billion-
scale graphs. Our solution for this problem is to exploit an
iterative method to solve the linear system w.r.t. r2. This
approach enables to avoid matrix inversion; consequently,
the preprocessing time and the storage cost for S−1 are elim-
inated. In the preprocessing phase, BePI-B precomputes
several matrices required in Equations (8), (9), and (10). In
the query phase, BePI-B computes those equations for a
given seed node based on the precomputed matrices.

BePI-B: Preprocessing phase (Algorithm 1). BePI-
B first reorders the adjacency matrix A using the deadend
reordering technique (line 1). Then, BePI-B permutes the

Algorithm 1: Preprocessing phase in BePI-B and
BePI-S
Input: graph: G, restart probability: c

Output: precomputed matrices: L−1
1 , U−1

1 , S, H12, H21, H31

and H32.

1: reorder A using the deadend reordering approach
2: reorder Ann using the hub-and-spoke reordering method

with the following hub selection ratio k:
(BePI-B only) select k which makes n2 small
(BePI-S only) select k which minimizes |S|

3: compute Ã, and H = I− (1− c)ÃT

4: partition H into H11,H12,H21,H22,H31, and H32

5: decompose H11 into L1 and U1 using LU decomposition

and compute L−1
1 and U−1

1
6: compute the Schur complement of H11,

S = H22 −H21(U−1
1 (L−1

1 (H12)))

7: return L−1
1 , U−1

1 , S, H12, H21, H31, and H32

Algorithm 2: Query phase in BePI-B and BePI-S

Input: seed node: s, restart probability: c, error tolerance: ε,

precomputed matrices: L−1
1 , U−1

1 , S, H12, H21, H31, and
H32

Output: relevance vector: r

1: create q whose sth entry is 1 and the others are 0
2: partition q into q1, q2, and q3

3: compute q̃2 = cq2 −H21(U−1
1 (L−1

1 cq1)
4: solve Sr2 = q̃2 using an iterative method and the error

tolerance ε
5: compute r1 = U−1

1 (L−1
1 (cq1 −H12r2))

6: compute r3 = cq3 −H31r1 −H32r2
7: create r by concatenating r1, r2, and r3

8: return r

adjacency matrix Ann using the hub-and-spoke reordering
method (details in Appendix A) so that the reordered matrix
contains a large block diagonal matrix as seen in Figure 3(c)
(line 2). Notice that when we permute Ann, the rows of
And also need to be permuted according to the permuta-
tion produced by the hub-and-spoke reordering method. In
BePI-B, we choose a hub selection ratio k which makes the
dimension of the Schur complement n2 small enough in or-
der to concentrate entries of Ann as much as possible. Then,
BePI-B computes and partitions H (lines 3 and 4). When
we compute H−1

11 , we invert the LU factors of H11 since this
approach is more efficient in terms of time and space than di-
rectly inverting H11 as suggested in [14, 38] (line 5). BePI-B
finally computes the Schur complement of H11 (line 6).

BePI-B: Query phase (Algorithm 2). In the query
phase, BePI-B computes the RWR score vector r for a given
seed node s based on the precomputed matrices. The vector
q denotes the length-n starting vector whose entry at the
index of the seed node s is 1 and otherwise 0. It is partitioned
into the length-n1 vector q1, the length-n2 vector q2, and
the length-n3 vector q3 (lines 1 and 2). BePI-B first solves
the linear system w.r.t. r2 in Equation (9) using an iterative
method (lines 3 and 4). Then, BePI-B computes r1 and r3
(lines 5 and 6).

Since S is non-symmetric and invertible [50], any iterative
methods for a non-symmetric matrix can be used; in this
paper, we use GMRES since it is the state-of-the-art method
in terms of efficiency and accuracy. GMRES repeats an
iteration procedure until the relative residual is less than an

error tolerance ε (i.e., ‖|Sr
(i)
2 − q̃2||2/||q̃2||2 ≤ ε where r

(i)
2

indicates r2 at the i-th iteration of GMRES).

0.1 0.2 0.3 0.4 0.5

Hub selection ratio (k)

0

1

2

3

4

5

6

7

N
u
m

b
e
r

o
f
n
o
n
-z

e
ro

s

×10
5

|S|
|H22|
|H21H

−1

11
H12|

(a) Slashdot

0.1 0.2 0.3 0.4 0.5

Hub selection ratio (k)

0

2

4

6

8

10

N
u

m
b

e
r

o
f

n
o

n
-z

e
ro

s

×10
5

|S|
|H22|
|H21H

−1

11
H12|

(b) Wikipedia

0.2 0.4 0.6

Hub selection ratio (k)

0

2

4

6

8

10

12

14

N
u

m
b

e
r

o
f

n
o

n
-z

e
ro

s

×10
7

|S|
|H22|
|H21H

−1

11
H12|

(c) Flickr

0.2 0.4 0.6

Hub selection ratio (k)

0

1

2

3

4

5

6

N
u
m

b
e
r

o
f
n
o
n
-z

e
ro

s

×10
8

|S|
|H22|
|H21H

−1

11
H12|

(d) WikiLink

Figure 4: The number of non-zeros of the Schur complement |S| with different hub selection ratio k on the Slashdot, the Wikipedia,
the Flickr, and the WikiLink datasets. The figures show the trade-off problem for selecting k. If we select large k, then |S| decreases
compared to small k. However, if we choose too large k (e.g., when k is greater than 0.3 in the sub-figures), then |S| increases. We set k
between 0.2 and 0.3 since those constants decrease |S| enough (see Table 2).

3.4 BePI-S: Sparsifying the Schur Complement
We present BePI-S which improves on BePI-B by de-

creasing the number of non-zero entries of the Schur com-
plement S used by the iterative procedure in BePI-B. Since
the time complexity of iterative methods depends on the
number of non-zeros of the matrix, this approach saves time
for solving the linear system on S. Also, decreasing non-zero
entries of S reduces the storage cost for S. By the defini-
tion of S (i.e., S = H22 −H21H

−1
11 H12), the entries of S are

determined by H22 and H21H
−1
11 H12. Thus, the number of

non-zeros of S is roughly bounded as follows:

|S| ≤ |H22|+ |H21H
−1
11 H12|

where |A| is the number of non-zeros of the matrix A.
To decrease the number of non-zeros of S, BePI-S sets a

hub selection ratio k which minimizes the number of non-
zeros of S. If we increase k, the hub-and-spoke reorder-
ing method selects more hubs at each step; therefore, n2

increases, and n1 decreases (i.e., n − n3 = n1 + n2). In
other words, |H22| increases while |H11|, |H12|, and |H21|
decrease; thus, |H21H

−1
11 H12| is also reduced. The point is

that, with a suitable choice of k, |S| decreases since |H22|
slightly increases while |H21H

−1
11 H12| is significantly reduced.

Note that this is a trade-off problem between the number of
entries of H22 and that of H21H

−1
11 H12. If we set k too

large, then although |H21H
−1
11 H12| decreases a lot, |H22|

also increases a lot; therefore, |S| becomes large. Figure 4
illustrates the trade-off problem on real-world graphs.

BePI-S: Preprocessing phase (Algorithm 1). BePI-
S precomputes the matrices demanded in the query phase
on top of BePI-B. First of all, BePI-S reorders A and Ann

using the deadend and the hub-and-spoke reordering meth-
ods similarly to BePI-B (line 1 and 2). However, when
BePI-S reorders Ann using the hub-and-spoke reordering
method, we set a hub selection ratio k which minimizes the
number of non-zeros of the Schur complement S (line 2).
We empirically select k as 0.2 or 0.3 which makes the Schur
complement sparse enough, as presented in Figure 4 and Ta-
ble 2. As we will discuss in Section 4.5, BePI-S accelerates
preprocessing speed by up to 10× and saves memory space
by up to 5× compared to BePI-B.

BePI-S: Query phase (Algorithm 2). BePI-S com-
putes RWR scores for a given seed node based on the pre-
computed matrices. Note that the query phase of BePI-S

is the same as that of BePI-B. However, the query speed
of BePI-S is faster than that of BePI-B because BePI-S
decreases the number of non-zeros of the Schur complement
used in the iterative method (line 4). As we will see in Sec-
tion 4.5, BePI-S leads to up to 5× performance improve-
ment in terms of query speed compared to BePI-B.

3.5 BePI: Preconditioning a Linear System for
the Iterative Method

Our final method BePI improves BePI-S by exploiting
a preconditioner [7] to enhance the speed of the iterative
method in the query phase. The main purpose of precondi-
tioning is to modify a linear system so that iterative methods
converge faster. More specifically, preconditioning decreases
the condition number of the matrix to be solved and makes
the eigenvalues of the modified system to form a tighter clus-
ter away from the origin. The small condition number and
the tight eigenvalue distribution are the main criteria for
fast convergence [37, 42]. A standard approach is to use a
non-singular matrix M as a preconditioner. With M, a lin-
ear system Ax = b is preconditioned to M−1Ax = M−1b.
Notice that the solution of the original system is the same
as that of the preconditioned system.

BePI exploits a preconditioner to make convergence faster
when solving the linear system of S in Equation (9) using
an iterative method. Among various preconditioning tech-
niques such as incomplete LU decomposition (ILU) [36] or
Sparse Approximate Inverse (SPAI) [8], we choose ILU as a
preconditioner because ILU factors are easily computed and
effective for preconditioning. The incomplete LU decompo-
sition of a matrix A is a sparse approximation of the LU
factors of the matrix, i.e., A ' L̃Ũ. The ILU factors, L̃ and
Ũ, have the same sparsity pattern as the lower and upper
triangular parts of A, respectively.

The linear system, Sr2 = q̃2, in Equation (9) is precondi-
tioned with the ILU factors of S as follows:

Ũ−1
2 L̃−1

2 Sr2 = Ũ−1
2 L̃−1

2 q̃2 (11)

where S ' L̃2Ũ2 and q̃2 = cq2−H21(H−1
11 (cq1)). Then, an

iterative method finds the solution r2 of the preconditioned
system in Equation (11). However, it is difficult to explicitly
construct the preconditioned system due to the inversion of
the ILU factors. Instead of directly obtaining Ũ−1

2 and L̃−1
2 ,

many preconditioned iterative methods, such as precondi-
tioned GMRES [35], involve a procedure which iteratively

Algorithm 3: Preprocessing phase in BePI

Input: graph: G, restart probability: c

Output: precomputed matrices: L−1
1 , U−1

1 , S, L̃2, Ũ2, H12,
H21, H31 and H32.

1: reorder A using the deadend reordering approach
2: reorder Ann using the hub-and-spoke reordering method

with a hub selection ratio k which minimizes |S|
3: compute Ã, and H = I− (1− c)ÃT

4: partition H into H11,H12,H21,H22,H31, and H32

5: decompose H11 into L1 and U1 using LU decomposition

and compute L−1
1 and U−1

1
6: compute the Schur complement of H11,

S = H22 −H21(U−1
1 (L−1

1 (H12)))

7: compute incomplete LU factors of S ' L̃2Ũ2

8: return L−1
1 , U−1

1 , S, L̃2, Ũ2, H12, H21, H31, and H32

Algorithm 4: Query phase in BePI

Input: seed node: s, restart probability: c, error tolerance: ε,

precomputed matrices: L−1
1 , U−1

1 , S, L̃2, Ũ2, H12, H21,
H31, and H32

Output: relevance vector: r

1: create q whose sth entry is 1 and the others are 0
2: partition q into q1, q2, and q3

3: compute q̃2 = cq2 −H21(U−1
1 (L−1

1 cq1)

4: solve the preconditioned system Ũ−1
2 L̃−1

2 Sr2 = Ũ−1
2 L̃−1

2 q̃2

using a preconditioned iterative method with L̃2 and Ũ2,
and the error tolerance ε

5: compute r1 = U−1
1 (L−1

1 (cq1 −H12r2))
6: compute r3 = cq3 −H31r1 −H32r2
7: create r by concatenating r1, r2, and r3

8: return r

preconditions the original system by taking advantage of tri-
angular matrix, L̃2 and Ũ2, without explicitly constructing
the preconditioned system and inverting the preconditioner
(see more details in Appendix A). We exploit a precondi-
tioned iterative method to solve the preconditioned system
in Equation (11) with the preconditioner.

BePI: Preprocessing phase (Algorithm 3). BePI
precomputes the matrices required for computing RWR scores
in the query phase. When BePI reorders nodes using the
hub-and-spoke reordering method, BePI also chooses the
hub selection ratio k which minimizes the number of non-
zeros of the Schur complement S as in BePI-S (line 2). After
reordering nodes, BePI computes H and the Schur comple-
ment S (lines 3∼6). Then, BePI calculates the ILU factors

of S, L̃2 and Ũ2 (line 7) to obtain a preconditioner for the
iterative method in the query phase. Note that the storage
cost of L̃2 and Ũ2 is the same as that of S, since L̃2 and Ũ2

follow the same sparsity pattern of S.
BePI: Query phase (Algorithm 4). In the query

phase, BePI computes Equations (8), (9), and (10) to obtain
the RWR score vector r w.r.t. a seed node s based on the
matrices precomputed by Algorithm 3. BePI first sets the
starting vector q for given seed node s (lines 1 and 2). Then,
BePI solves the preconditioned system in Equation (11) us-
ing an iterative method such as preconditioned GMRES (see

details in Appendix A) with the preconditioner L̃2 and Ũ2

(lines 3 and 4). After obtaining r2, BePI computes r1 and
r3 (lines 5 and 6). As we will see in Section 4.5, the precon-
ditioner accelerates query speed by up to 4× compared to
BePI-S.

3.6 Theoretical Results
We analyze the time and space complexities of BePI.

Moreover, we analyze the accuracy bound of BePI, since
BePI exploits an iterative method. Note that all matrices
are saved in a sparse matrix format such as compressed col-
umn storage [12] which contains only non-zero entries and
their locations, and all sparse matrix operations such as
sparse matrix vector multiplication only consider non-zero
entries to exploit such sparsity.

3.6.1 Time Complexity
We provide proofs for the time complexity of BePI.
Theorem 1. The preprocessing phase of BePI takes

O(dn2/(k× l)e(m+ l log l) +
∑b
i=1 n

3
1i +n2

∑b
i=1 n

2
1i + |S|+

min(n2
2n1, n2m)) where l = n1+n2 and k is the hub selection

ratio of the hub-and-spoke reordering method.
Proof. Computing L−1

1 , U−1
1 , and S after doing the hub-

and-spoke reordering method takes O(dn2/(k×l)e(m+l log l)+∑b
i=1 n

3
1i + n2

∑b
i=1 n

2
1i + min(n2

2n1, n2m)) [38] where l =
n1+n2 and dn2/(k×n)e indicates the number of iterations of
SlashBurn. Since incomplete LU decomposition for a sparse
matrix A takes O(|A|) [36], it takes O(|S|) to compute L̃2

and Ũ2.
According to Theorem 1, the preprocessing cost of BePI

mainly depends on the number of iterations of the reorder-
ing method and the computations related to the Schur com-
plement. Note that since the number of iterations of the
hub-and-spoke reordering method [23] and |S| are reduced
as k increases, the preprocessing cost decreases as in Figures
6(a) and 8. Also, Theorem 1 indicates that the preprocess-
ing cost of BePI is much smaller than that of Bear, the
state-of-the-art block elimination approach, since BePI de-
mands O(|S|) and Bear requires O(n3

2) (i.e., |S| � n3
2) while

other factors are the same in both methods.
Theorem 2. The query phase of BePI takes O(

∑b
i=1 n

2
1i+

min(n1n2,m)+min(n1n3,m)+min(n2n3,m)+T |S|) where
T is the number of iterations.

Proof. Since it takes O(
∑b
i=1 n

2
1i+min(n1n2,m)) to com-

pute q̃2 = cq2 −H21(H−1
11 (cq1)) [38], and solving a sparse

linear system Ax = b with an iterative method takes O(T |A|)
where T is the number of iterations [37], it takes O(

∑b
i=1 n

2
1i+

min(n1n2,m) + T |S|) to solve the linear system of S. Note
that the time complexity for computing r1 is the same as that
of q̃2. For r3, it takes O(min(n1n3,m)+min(n2n3,m)).

Theorem 2 implies that the query cost of BePI mainly
depends on the number of iterations T and |S|. Since |S| and
T are reduced by the sparsification of the Schur complement
and the preconditioner, respectively, the query cost of BePI
decreases compared to those of BePI-B and BePI-S.

3.6.2 Space Complexity
We provide a proof for the space complexity of BePI.

Theorem 3. BePI requires O(
∑b
i=1 n

2
1i+min(n1n2,m)+

min(n1n3,m) +min(n2n3,m) + |S|) memory space for pre-

processed matrices: L−1
1 , U−1

1 , S, L̃2, Ũ2, H12, H21, H31,
and H32.

Proof. It requires O(min(n1n2,m)) memory space for

H12 and H12, and O(
∑b
i=1 n

2
1i) memory space for L−1

1 and

U−1
1 [38]. Also, it requires O(min(n1n3,m)+min(n2n3,m))

memory space for H31 and H32. Since the space cost for
incomplete LU factors is the same as that of the given sparse
matrix, it requires O(|S|) for S, L̃2 and Ũ2.

Theorem 3 indicates that the space cost of BePI mainly
depends on O(|S|) because the number of non-zeros of S is
larger than those of other matrices except for the incomplete
LU factors of S. Note that BePI demands much smaller
memory space than the state-of-the-art method Bear be-
cause the space cost of Bear mainly depends on O(n2

2); i.e.,
|S| � n2

2. Also, through sparsifying the Schur complement
S, the space costs of BePI and BePI-S decrease compared
to that of BePI-B which is the basic version without spar-
sifying S.

3.6.3 Accuracy Bound
We analyze the accuracy bound of the RWR score vector

r computed by BePI. Since r consists of r1, r2, and r3, and
r1 and r3 are computed after r2, we first analyze the bound
of r2 in Lemma 2, that of r1 in Lemma 3, and that of r3 in
Lemma 4. Then, we conclude the bound of r in Theorem 4
using these lemmas.

Lemma 2 (Accuracy Bound of r2). Let r∗2 be the true
solution of the linear system Sr2 = q̃2 where q̃2 = cq2 −
H21(H−1

11 (cq1)), and r
(k)
2 be the solution computed by BePI

after the relative residual becomes less than a given tolerance

ε at the k-th iteration. Then, ||r∗2− r
(k)
2 ||2 ≤

||q̃2||2
σmin(S)

ε where

σmin(S) is the smallest singular value of S.

Proof. See Appendix E.

Lemma 3 (Accuracy Bound of r1). Let r∗1 be the true
solution of the linear system H11r1 = q̃1 where q̃1 = cq1 −
H12r2, and r

(k)
1 be the solution of H11r

(k)
1 = q̃

(k)
1 where

q̃
(k)
1 = cq1−H12r

(k)
2 . Then, ||r∗1 − r

(k)
1 ||2 ≤

||H12||2
σmin(H11)

||r∗2 −
r
(k)
2 ||2 ≤

||H12||2||q̃2||2
σmin(H11)σmin(S)

ε where σmin(A) is the smallest

singular value of a matrix A.

Proof. See Appendix F.

Lemma 4 (Accuracy Bound of r3). Let r∗3 be the true

solution of the equation r3 = cq3−H31r
∗
1−H32r

∗
2, and r

(k)
3

be the solution of r
(k)
3 = cq3 − H31r

(k)
1 − H32r

(k)
2 . Then,

‖r∗3 − r
(k)
3 ‖2 ≤ ‖H31‖2‖r∗1 − r

(k)
1 ‖2 + ‖H32‖2‖r∗2 − r

(k)
2 ‖2.

Proof. See Appendix G.

Theorem 4 (Accuracy Bound of BePI). Let r∗ be

the true solution of the linear system Hr = cq, and r(k)

be the solution r(k) =
[
r
(k)
1 , r

(k)
2 , r

(k)
3

]T
where r

(k)
2 is the

solution of Sr2 = q̃2 computed by BePI after the residual
becomes less than the error tolerance ε at the k-th iteration,

r
(k)
1 is the solution of H11r

(k)
1 = cq1 − H12r

(k)
2 , and r

(k)
3

is the solution of r3 = cq3 − H31r
(k)
1 − H32r

(k)
2 . Let α =

||H12||2
σmin(H11)

. Then, ||r∗ − r(k)||2 is bounded as follows:

||r∗−r(k)||2 ≤
(√

(α||H31||2 + ||H32||2)2 + α2 + 1

)
||q̃2||2
σmin(S)

ε.

Proof. By the definition of L2-norm, ||r∗−r(k)||22 is rep-
resented as follows:

||r∗ − r(k)||22 =

∥∥∥∥∥∥∥
r∗1 − r

(k)
1

r∗2 − r
(k)
2

r∗3 − r
(k)
3

∥∥∥∥∥∥∥
2

2

= ‖r∗1 − r
(k)
1 ‖

2
2 + ‖r∗2 − r

(k)
2 ‖

2
2 + ‖r∗3 − r

(k)
3 ‖

2
2

Then, by Lemma 4, it is bounded as follows:

||r∗ − r(k)||22 ≤ ‖r∗1 − r
(k)
1 ‖

2
2 + ‖r∗2 − r

(k)
2 ‖

2
2 + ‖H31‖22‖r∗1 − r

(k)
1 ‖

2
2

+ ‖H32‖22‖r∗2 − r
(k)
2 ‖

2
2 + 2‖H31‖2‖H32‖2‖r∗1 − r

(k)
1 ‖2‖r

∗
2 − r

(k)
2 ‖2

From Lemma 3, ||r∗1 − r
(k)
1 ||2 ≤

||H12||2
σmin(H11)

||r∗2 − r
(k)
2 ||2 =

α||r∗2 − r
(k)
2 ||2 where α = ||H12||2

σmin(H11)
. Hence, the bound is

represented as follows:

||r∗ − r(k)||22 ≤ ‖r∗2 − r
(k)
2 ‖

2
2

(
α2 + 1 + α2‖H31‖22 + ‖H32‖22+

2α‖H31‖2‖H32‖2
)

= ||r∗2 − r
(k)
2 ||

2
2

(
α2 + 1 + (α‖H31‖2 + ‖H32‖2)2

)
.

By Lemma 2, ‖r∗2 − r
(k)
2 ‖2 ≤

||q̃2||2
σmin(S)

ε; thus, the above

inequality is written as follows:

||r∗ − r(k)||22 ≤
(
α2 + 1 + (α‖H31‖2 + ‖H32‖2)2

)(‖q̃2‖2
σmin(S)

ε

)2

.

Finally, the bound of ||r∗ − r(k)||2 is represented in the
following inequality:

||r∗ − r(k)||2 ≤
(√

(α||H31||2 + ||H32||2)2 + α2 + 1

)
||q̃2||2
σmin(S)

ε

According to Theorem 4, the accuracy of BePI is bounded
by the norms and the smallest singular values of the input
matrices and the error tolerance ε. Also, Theorem 4 indi-
cates that BePI guarantees ||r∗−r(k)||2 ≤ εT where εT is the
target accuracy if we set the error tolerance to ε satisfying
the following inequality:

0 < ε ≤
(√

(α||H31||2 + ||H32||2)2 + α2 + 1

)−1
σmin(S)

||q̃2||2
εT .

4. EXPERIMENTS
In this section, we evaluate the performance of our method

BePI, and compare it to other existing methods for comput-
ing RWR scores. We aim to answer the following questions
from the experiments:

• Q1. Preprocessing cost (Section 4.2). How much
memory space do BePI and other methods require for
their preprocessed results? How long does this prepro-
cessing phase take?
• Q2. Query cost (Section 4.3). How quickly does

BePI respond to an RWR query compared to other
methods?
• Q3. Scalability (Section 4.4). How well does BePI

scale up compared to other methods?
• Q4. Effectiveness of the optimizations (Sec-

tion 4.5). How effective are the sparsification of the
Schur complement (Section 3.4) and the precondition-
ing (Section 3.5) in terms of preprocessing and query
cost?
• Q5. Effects of the hub selection ratio k (Sec-

tion 4.6) How does the hub selection ratio k in Al-
gorithm 3 affect the performance of BePI in terms of
running time and memory requirement?

4.1 Experimental Settings
Machine. All experiments are conducted on a worksta-

tion with a single CPU Intel(R) Xeon(R) CPU E7540 @
2.00GHz and 500GB memory.

Table 2: Summary of real-world datasets. A brief description of each dataset is in Appendix H. n is the number of nodes, m is the
number of edges, and k is the hub selection ratio in SlashBurn used for BePI-S and BePI. n1 is the number of spokes, n2 is the number
of hubs, and n3 is the number of deadends. For BePI-B, we set k to 0.001 in SlashBurn. Note that n2 of BePI-S are the same as that
of BePI.

dataset n m k
n1 in

BePI-B

n1 in
BePI and
BePI-S

n2 in
BePI-B

n2 in
BePI and
BePI-S

n3

Slashdot 79, 120 515, 581 0.30 37, 872 31, 920 7, 728 13, 680 33, 520
Wikipedia 100, 312 1, 627, 472 0.25 79, 737 72, 187 16, 512 24, 062 4, 063
Baidu 415, 641 3, 284, 317 0.20 347, 596 315, 586 46, 886 78, 896 21, 159
Flickr 2, 302, 925 33, 140, 017 0.20 1, 717, 120 1, 554, 006 225, 388 388, 502 360, 417
LiveJournal 4, 847, 571 68, 475, 391 0.30 3, 138, 041 2, 655, 345 1, 156, 291 1, 638, 987 553, 239
WikiLink 11, 196, 007 340, 240, 450 0.20 8, 670, 438 8, 062, 003 2, 505, 984 3, 114, 419 19, 585
Twitter 41, 652, 230 1, 468, 365, 182 0.20 33, 927, 419 24, 061, 969 6, 175, 862 16, 041, 312 1, 548, 949
Friendster 68, 349, 466 2, 586, 147, 869 0.20 43, 666, 118 33, 666, 118 12, 444, 080 22, 444, 080 12, 239, 268

10-1

100

101

102

103

104

105

106 107 108

Pr
ep

ro
ce

ss
in

g
Ti

m
e

(s
ec

)

Number of edges

BePI
Bear

LU

100x

o.o.t.o.o.t.

slope=1.01

(a) Preprocessing time

100

101

102

103

104

106 107 108

M
em

or
y

us
ag

e
(M

B)

Number of edges

BePI
Bear

LU

100x
o.o.t.o.o.t.

slope=0.9
9

(b) Space for preprocessed data

10-3

10-2

10-1

100

101

102

103

106 107 108

Q
ue

ry
 T

im
e

(s
ec

)

Number of edges

BePI
Bear

LU
GMRES

Power

slope=1.1
o.o.t.

o.o.t.

(c) Query time

Figure 5: Scalability of BePI compared to other methods on the WikiLink dataset. (a), (b), and (c) show the scalability of the three
methods in terms of the number of edges. o.o.t. stands for out of time (more than 24 hours). BePI shows up to 100× better scalability
than existing preprocessing methods, and scales well with regard to the size of graphs. Also, BePI provides near linear scalability in
terms of preprocessing and query cost.

Methods. We compare our methods with power itera-
tion, LU decomposition, a Krylov subspace method (GM-
RES), and Bear, all of which are described in Section 2. We
evaluate our approach using three different versions:

• BePI-B is the basic version without the sparsification
of the Schur complement and the preconditioner.
• BePI-S exploits only the sparsification of the Schur

complement without the preconditioner.
• BePI uses both the sparsification of the Schur comple-

ment and the preconditioner.

Approximate methods are excluded from the experiments
since all the aforementioned methods including our methods
compute exact RWR scores. All these methods are imple-
mented in C++ and Eigen [19] which is an open source C++
numerical linear algebra package supporting sparse matrix
operations.

Data. The graph data used in our experiments are sum-
marized in Table 2. A brief description of each dataset is in
Appendix H.

Parameters. We set the restart probability c to 0.05
as in the previous works [41, 38]. For Bear and BePI-B,
we set k of the hub-and-spoke reordering method to 0.001
as in the previous work [38]. For BePI-S and BePI, we
set k of the hub-and-spoke reordering method differently
for each dataset as described in Table 2 to make the Schur
complement sparse. For larger graphs, 0.2 is usually used
for k. The error tolerance ε for power iteration, GMRES,
and our method is set to 10−9. We set the time limit for
preprocessing to 24 hours.

4.2 Preprocessing Cost

We examine the cost of the preprocessing phase of BePI
in terms of preprocessing time and memory space for pre-
processed data. We compare our method with Bear and
LU decomposition, the best preprocessing methods. Pre-
processing time is measured in wall-clock time, and it in-
cludes the time taken for SlashBurn in BePI and Bear.
Figures 1(a) and 1(b) show the preprocessing time and the
memory space usage of preprocessed data. Note that only
BePI successfully performs the preprocessing phase for all
the datasets, while other methods fail because their memory
requirements are high, or they run out of time. As seen in
Figure 1(a), BePI requires the least amount of time, which is
less than about 2 hours for all the datasets. For the Slashdot
dataset, which is the smallest dataset, BePI is 3, 679× faster
than Bear. For other datasets, Bear and LU decomposition
fail to show the results (they took more than 24 hours). To
compare memory efficiency, we measure how much memory
each method requires for the preprocessed matrices. As seen
in Figure 1(b), BePI requires the least amount of space for
preprocessed matrices. BePI requires up to 130× less mem-
ory space than other competitors in all the datasets, which
indicates the superiority of our method in terms of scalabil-
ity compared to other preprocessing methods.

4.3 Query Cost
We compare BePI with other methods in terms of query

cost. We compare our method with power iteration, GM-
RES, Bear, and LU decomposition. We measure the average
query time for 30 random seed nodes.

As presented in Figure 1(c), only BePI and iterative meth-
ods successfully compute RWR scores on all the datasets,

10-1

100

101

102

103

104

105

Slashdot

Wikipedia

Baidu
Flickr

LiveJournal

WikiLink

Twitter

Friendster

W
al

l c
lo

ck
 ti

m
e

(s
ec

)
BePI-B
BePI-S

BePI

3x 4x
8x

4x

10x
6x

6x

(a) Effect on preprocessing time

101

102

103

104

105

106

Slashdot

Wikipedia

Baidu
Flickr

LiveJournal

WikiLink

Twitter

Friendster

M
em

or
y

us
ag

e
(M

B)

BePI-B
BePI-S

BePI

2x 1.4x

5x
3x

4x 2x

5x

(b) Effect on space for preprocessed
data

10-2

10-1

100

101

102

103

104

Slashdot

Wikipedia

Baidu
Flickr

LiveJournal

WikiLink

Twitter

Friendster

W
al

l c
lo

ck
 ti

m
e

(s
ec

)

BePI-B
BePI-S

BePI

1.2x

1.2x

5x

3x
4x 1.2x

3x

4x

3x
3x

3x
2x

3x
2x 1.2x

(c) Effect on query time

Figure 6: Effect of the sparsification of the Schur complement and the preconditioning. In these figures, bars are omitted in case the
corresponding experiments run out of memory. In terms of the effect of the sparsification of the Schur complement, (a) and (b) show
that the preprocessing cost is reduced: BePI-S is up to 10× faster than BePI-B, and BePI-S requires up to 5× less memory space than
BePI-B. Moreover, (c) presents that the query time is also decreased: BePI-S is up to 5× faster than BePI-B in the query phase. In
terms of the effect of the preconditioning, the preprocessing cost of BePI is slightly larger than that of BePI-S as seen in (a) and (b)
due to the additional operation for incomplete LU factors. However, BePI is up to 4× faster than BePI-S in the query phase thanks to
the effect of the preconditioning as shown in (c).

and BePI outperforms competitors for large graphs. For the
Baidu dataset, BePI is up to 9× faster than GMRES, which
is the second best one. For the largest Friendster dataset,
BePI is 3× faster than GMRES. Compared to power iter-
ation, BePI is 19× and 10× faster for the Baidu and the
Friendster datasets, respectively.

4.4 Scalability
We compare the scalability of BePI against existing meth-

ods, in terms of the number of edges. For the WikiLink
dataset, we extract the principal submatrices, which are the
upper left part of the adjacency matrix, of different lengths
so that the number of edges of each matrix is different. For
each submatrix, we preprocess the matrix using BePI, Bear,
and LU decomposition. Then, we compute RWR scores us-
ing BePI, Bear, LU decomposition, power iteration, and
GMRES. We measure preprocessing time, memory usage
and average query time for 30 randomly selected seed nodes.

Figure 5 presents that BePI shows a good scalability with
respect to the number of edges, while other preprocessing
methods fail to scale up. As shown in Figures 5(a) and 5(b),
BePI processes 100× larger graph, while using less memory
space than other preprocessing methods. Also, the slope of
the fitted line for BePI is 1.01 in Figure 5(a), 0.99 in Fig-
ure 5(b), and 1.1 in Figure 5(c). These results indicate that
BePI provides near linear scalability in terms of preprocess-
ing and query cost.

4.5 Effects of Sparse Schur Complement and
Preconditioning

4.5.1 Effects on Preprocessing Phase
We examine the effects of the sparsification of the Schur

complement (Section 3.4) and the preconditioning (Section 3.5)
in the preprocessing phase of BePI. We measure the prepro-
cessing time and the space for preprocessed data required by
BePI, BePI-S, and BePI-B for each dataset.

To investigate the effect of the sparsification of the Schur
complement, we first compare BePI-B with BePI-S in terms
of the preprocessing time and the memory space. For pre-
processing time, Figure 6(a) shows that BePI-S is up to
10× faster than BePI-B. For memory space, Figure 6(b)
presents that BePI-S requires up to 5× less memory space
than BePI-B. Table 3 summarizes the reduction of non-zero

Table 3: The number of non-zeros of S computed by our methods.
Note that the number of non-zeros of S decreases by the sparsifi-
cation of the Schur complement. BePI-B runs out of time (more
than 24 hours) when computing S for the Friendster dataset,
while BePI-S and BePI successfully compute it.

dataset
A: (|S| in
BePI-B)

B: (|S| in BePI
or BePI-S)

ratio
(A/B)

Slashdot 664, 686 353, 559 1.9×
Wikipedia 844, 983 626, 887 1.3×
Baidu 23, 136, 773 2, 359, 563 9.8×
Flickr 113, 842, 305 29, 990, 289 3.8×
LiveJournal 417, 551, 300 83, 070, 865 5.0×
WikiLink 555, 468, 477 377, 197, 963 1.5×
Twitter 8, 494, 161, 448 1, 640, 399, 051 5.2×
Friendster o.o.t. 2, 018, 006, 285 −

Table 4: The average number of iterations to compute r2 by
BePI-S and BePI. After preconditioning, the number of iterations
for solving the linear system of S decreases.

dataset
A:

(# iterations
in BePI-S)

B:
(# iterations

in BePI)

ratio
(A/B)

Slashdot 43.2 6.6 6.5×
Wikipedia 52.4 13.1 4.0×
Baidu 42.6 14.9 2.9×
Flickr 44.2 11.3 3.9×
LiveJournal 49.1 16.2 3.0×
WikiLink 70.2 16.5 4.3×
Twitter 60.3 18.7 3.2×
Friendster 24.2 10.5 2.3×

entries of the Schur complement after applying the sparsifi-
cation of the Schur complement. For all datasets, the num-
ber of non-zero entries of S decreases by the sparsification.
Especially, BePI-S reduces the number of non-zeros of S by
9.8× than BePI-B for the Baidu dataset. BePI-B runs out
of time when computing S for the largest Friendster dataset.

Compared to BePI-S, BePI uses slightly more memory
space as seen in Figure 6(b). In addition, the preprocessing
phase of BePI takes slightly longer than that of BePI-S.
The reason is that BePI computes the incomplete LU fac-
tors of S, L̃2 and Ũ2, in the preprocessing phase, while
BePI-S does not. However, the gap between them is small
in terms of the preprocessing time and the memory space;
furthermore, BePI achieves faster query time thanks to the
incomplete LU factors, which we describe in the following
subsection.

Real part of an eigenvalue
1 1.2 1.4 1.6 1.8 2

Im
ag

in
ar

y
pa

rt
 o

f a
n

ei
ge

nv
al

ue

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
BePI-S
BePI

(a) Slashdot

Real part of an eigenvalue
1 1.2 1.4 1.6 1.8 2

Im
ag

in
ar

y
pa

rt
 o

f a
n

ei
ge

nv
al

ue

-0.5

0

0.5
BePI-S
BePI

(b) Wikipedia

Real part of an eigenvalue
1.2 1.4 1.6 1.8 2

Im
ag

in
ar

y
pa

rt
 o

f a
n

ei
ge

nv
al

ue

#10-3

-5

0

5
BePI-S
BePI

(c) Baidu

Figure 7: Distribution of the top-200 eigenvalues of the preconditioned Schur complement (blue o’s) and the original Schur complement
(red x’s). X-axis and y-axis represent the real part and the imaginary part of an eigenvalue, respectively. Results from three different
datasets, Slashdot, Wikipedia, and Baidu, show that the dispersion of eigenvalue distribution becomes much smaller when the Schur
complement is preconditioned.

0.2 0.4 0.6

Hub selection ratio (k)

0

2

4

6

8

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

15

20

25

30

35

M
e
m

o
ry

 U
s
a
g
e
(M

B
)

0.2 0.4 0.6

Hub selection ratio (k)

0

0.05

0.1

0.15

0.2

Q
u
e
ry

 T
im

e
(s

e
c
)

(a) Slashdot

0.2 0.4 0.6

Hub selection ratio (k)

0

200

400

600

800

1000

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

0

1000

2000

3000

M
e
m

o
ry

 U
s
a
g
e
(M

B
)

0.2 0.4 0.6

Hub selection ratio (k)

0

2

4

6

8

10

Q
u

e
ry

 T
im

e
(s

e
c
)

(b) Baidu

0.2 0.4 0.6

Hub selection ratio (k)

0

200

400

600

800

1000

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

1000

2000

3000

4000

5000

M
e
m

o
ry

 U
s
a
g
e
(M

B
)

0.2 0.4 0.6

Hub selection ratio (k)

5

10

15

20

25

30

Q
u
e
ry

 T
im

e
(s

e
c
)

(c) Flickr

0.2 0.4 0.6

Hub selection ratio (k)

0

1000

2000

3000

4000

P
re

p
ro

c
e

s
s
in

g
 T

im
e

(s
e

c
)

0.2 0.4 0.6

Hub selection ratio (k)

0

5000

10000

15000

M
e
m

o
ry

 U
s
a
g
e
(M

B
)

0.2 0.4 0.6

Hub selection ratio (k)

50

100

150

200

Q
u

e
ry

 T
im

e
(s

e
c
)

(d) LiveJournal

Preprocessing time Space for preprocessed data Query time

Figure 8: Effects of the hub selection ratio k in Algorithm 3. According to results, preprocessing time and memory usage of BePI
decrease as k increases. Especially, when k is small (e.g., k = 0.001), preprocessing time and memory consumption are high. The query
speed of BePI is the fastest when k is around 0.2 ∼ 0.3 as shown in the figures.

4.5.2 Effects on Query Phase
We investigate the effects of the sparsification of the Schur

complement and the preconditioner on the query phase of
our method. To evaluate the effects, we generate 30 ran-
dom seeds, and measure the average query time using BePI,
BePI-S, and BePI-B. Figure 6(c) compares these methods
in terms of query time.

We first compare BePI-B and BePI-S to see the effect
of the sparsification of the Schur complement. According to
the result shown in Figure 6(c), BePI-S is up to 5× faster
than BePI-B. This speedup is due to the reduction in the
number of non-zeros of S by the sparsification of the Schur
Complement as described in Table 2.

For analyzing the effect of preconditioning, we compare
BePI-S and BePI. BePI is up to 4× faster than BePI-S as
shown in Figure 6(c). Applying the preconditioner reduces
the number of iterations for computing r2, as summarized
in Table 4. This faster convergence is closely related to the
tighter clustering of eigenvalues of the preconditioned Schur
complement [37]. Figure 7 shows that the eigenvalues in
BePI form a tight cluster, while those in BePI-S do not. In
sum, BePI is up to 13× faster than BePI-B in the query

phase, which indicates that the query cost is effectively re-
duced with the sparsification of the Schur complement and
the preconditioner.

4.6 Effects of the Hub Selection Ratio
We investigate the effects of the hub selection ratio k (Al-

gorithm 3) on the performance of our method BePI. We
measure preprocessing time, memory space of preprocessed
data, and query time of BePI varying k on the Slashdot,
the Baidu, the Flickr, and the LiveJournal datasets. As
shown in Figure 8, the performance of BePI in terms of
preprocessing time and memory usage becomes improved
as k increases. In particular, BePI requires high prepro-
cessing time and memory space when k is very small (e.g.,
k = 0.001). In terms of query time, BePI shows the best
performance when k is from 0.2 through 0.3 as presented in
Figure 8. There are two reasons for these effects. First, if
we set a large k in Algorithm 3, then the running time of
the hub-and-spoke reordering method decreases because the
number of iterations of the reordering method is reduced.
Also, as described in Section 3.4 and Table 3, the number of
non-zeros of the Schur complement decreases as k increases

from 0; thus, the memory usage is reduced. However, setting
too large k is not good for query time because the number
of non-zeros and the dimension of the Schur complement be-
come large. As shown in Figure 8, when k is around 0.2, it
provides a good trade-off between preprocessing time, mem-
ory usage, and query time.

5. RELATED WORKS
We review previous works on RWR from three perspec-

tives: (1) relevance measures and applications, (2) approxi-
mate and top-k methods, and (3) preprocessing methods.

Relevance measures and applications of RWR. There
are various node-to-node relevance measure methods based
on link analysis and random walk in graphs: PageRank [32,
44], Personalized RageRank [5, 4, 15], SimRank [2, 25, 51],
and Random Walk with Restart [14, 38, 49]. As a popular
relevance measure, RWR has been used widely for many ap-
plications. Kim et al. [24] proposed an image segmentation
algorithm that finds a generative model for each label by us-
ing RWR in measuring the proximity between a pixel and a
seed. Andersen et al. [1] introduced a local graph partition-
ing algorithm that employed RWR to find a good cut with
small conductance around a starting node. Gleich et al. [18]
and Whang et al. [45] improved this algorithm in terms of
seeding strategy. Wang et al. [43] proposed an image annota-
tion method that generates candidate annotations, re-ranks
them using RWR, and reserves the top ones. Pan et al. [34]
proposed a general, RWR-based method to discover correla-
tions across multimedia data. Sun et al. [39] proposed algo-
rithms for neighborhood formulation and anomaly detection
using RWR in bipartite graphs. By combining RWR and su-
pervised learning, Backstrom et al. [3] presented a link pre-
diction method that learns a random walk biasing function
from the node and edge attributes. Zhu et al. [52] employed
RWR in their transductive model for content-based image
retrieval. Jung et al. [21] designed a personalized ranking
model in signed networks based on the concept of RWR.

Approximate and top-k methods for RWR. As dis-
cussed in Section 2.2, iterative approaches often fail to scale
up for real-world applications due to high computational
cost. Several approximate methods have been developed to
overcome this problem. Observing that the relevance scores
are highly skewed, and real-world graphs often exhibit a
block-wise structure, Sun et al. [39] proposed an approxi-
mate algorithm that performs RWR only on the partition
containing the seed node, while setting the relevance score
of other nodes outside the partition to 0. Building on sim-
ilar observations, Tong et al. [41] proposed approximate al-
gorithms, B LIN and its derivatives, in which they applied
a low-rank approximation to the cross-partition links using
eigenvalue decomposition. Gleich et al. [17] proposed meth-
ods that apply RWR only to a part of the graph, which
is determined adaptively in the query phase. Andersen et
al. [1] presented an algorithm for local graph partitioning
problem that computes PageRank vectors approximately.
Fast-PPR, a Monte Carlo-based method proposed by Lof-
gren et al. [30], estimates the single pair PPR (Personalized
PageRank) between a start node and a target node by em-
ploying a bi-directional scheme. Bahmani et al. [4] developed
a fast MapReduce algorithm based on Monte Carlo simula-
tion for approximating PPR scores. To compute PPR ap-
proximately, Xie et al. [47] used a model reduction approach
where solutions are projected to a low dimensional space.

Also, several works have been proposed to focus on the k
most relevant nodes w.r.t. a seed node instead of calculat-
ing the RWR scores of every node. K-dash, a top-k method
proposed by Fujiwara et al. [14], computes the RWR scores
of top-k nodes by exploiting precomputed sparse matrices
and pruning strategies. Wu et al. [46] proposed Fast Local
Search (FLOS) which finds top-k relevant nodes in terms
of various measures including RWR. However, approximate
and top-k computation for RWR scores are insufficient for
many data mining applications [24, 1, 34, 3, 52, 41, 48] which
require accurate RWR scores for any pair of nodes, whereas
BePI calculates the RWR scores of all nodes exactly.

Preprocessing methods for RWR. The query speed
of RWR can be accelerated significantly by precomputing
H−1, as discussed in Section 2.3. However, matrix inversion
does not scale up for large graphs, as it involves a dense
matrix that is too large to fit in memory. To tackle this
problem, alternative preprocessing methods have been de-
veloped. Tong et al. [41] proposed NB LIN, which decom-
poses the adjacency matrix using a low-rank approximation
in the preprocessing phase, and approximates H−1 from the
decomposed matrices in the query phase. Fujiwara et al. ap-
plied LU decomposition [14] and QR decomposition [16] to
the adjacency matrix to obtain sparser matrices to use in
place of H−1. Prior to applying LU decomposition [14],
they reordered H based on the degree of nodes and the com-
munity structure to make L−1 and U−1 sparse. Bear [38,
22] preprocesses the adjacency matrix by exploiting node
reordering and block elimination techniques. While all of
these methods made performance improvements over pre-
vious approaches, they suffer from the scalability problem
when it comes to billion-scale graphs.

In addition to the techniques described above, computing
relevance scores on dynamic graphs is also an interesting
topic [5, 22, 6]. A conventional strategy for preprocessing
methods on dynamic graphs is batch update, e.g., it stores
update information such as edge insertions for one day, and
re-preprocesses the changed graph at midnight. Note that
our method is desirable for this case since our method is
efficient in terms of preprocessing time. Another approach
is to incrementally update preprocessed data as suggested
in [22].

6. CONCLUSION
In this paper, we propose BePI, a fast, memory-efficient,

and scalable algorithm for random walk with restart com-
putation on billion-scale graphs. BePI takes the advantages
of both preprocessing methods and iterative methods by in-
corporating an iterative method within a block elimination
approach. Furthermore, BePI improves the performance by
decreasing the number of non-zeros of a matrix and apply-
ing a preconditioner. Consequently, BePI achieves a better
scalability as well as faster query time than existing meth-
ods. We give theoretical analysis on the accuracy and com-
plexities of BePI. Also, we experimentally show that BePI
processes up to 100× larger graph, and requires up to 130×
less memory space than other preprocessing methods. In the
query phase, BePI computes RWR scores 9× faster than
other existing methods in large graphs which other prepro-
cessing methods fail to process, due to running out of mem-
ory or time. Future research directions include extending
BePI to a distributed environment.

Acknowledgment
This work was supported by the Basic Science Research Pro-
gram through the National Research Foundation of Korea
funded by the Ministry of Science, ICT and Future Planning
(grant No. 2015R1C1A2A01055739 and 2015K1A3A1A1402
1055). U Kang is the corresponding author.

7. REFERENCES
[1] R. Andersen, F. Chung, and K. Lang. Local graph

partitioning using pagerank vectors. In FOCS, pages
475–486, 2006.

[2] I. Antonellis, H. G. Molina, and C. C. Chang. Simrank++:
Query rewriting through link analysis of the click graph.
PVLDB, 1(1):408–421, 2008.

[3] L. Backstrom and J. Leskovec. Supervised random walks:
Predicting and recommending links in social networks. In
WSDM, pages 635–644, 2011.

[4] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized
pagerank on mapreduce. In SIGMOD, pages 973–984.
ACM, 2011.

[5] B. Bahmani, A. Chowdhury, and A. Goel. Fast incremental
and personalized pagerank. Proceedings of the VLDB
Endowment, 4(3):173–184, 2010.

[6] B. Bahmani, R. Kumar, M. Mahdian, and E. Upfal.
Pagerank on an evolving graph. pages 24–32, 2012.

[7] M. Benzi. Preconditioning techniques for large linear
systems: a survey. Journal of computational Physics,
182(2):418–477, 2002.

[8] M. Benzi, C. D. Meyer, and M. Tuma. A sparse
approximate inverse preconditioner for the conjugate
gradient method. SIAM Journal on Scientific Computing,
17(5):1135–1149, 1996.

[9] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2009.

[10] S. Chakrabarti, A. Pathak, and M. Gupta. Index design
and query processing for graph conductance search.
PVLDB, 20(3):445–470, 2011.

[11] J. W. Demmel. Applied numerical linear algebra. Siam,
1997.

[12] I. S. Duff, R. G. Grimes, and J. G. Lewis. Sparse matrix
test problems. ACM Transactions on Mathematical
Software (TOMS), 15(1):1–14, 1989.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In SIGCOMM,
volume 29, pages 251–262. ACM, 1999.

[14] Y. Fujiwara, M. Nakatsuji, M. Onizuka, and
M. Kitsuregawa. Fast and exact top-k search for random
walk with restart. PVLDB, 5(5):442–453, 2012.

[15] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and
M. Onizuka. Efficient ad-hoc search for personalized
pagerank. In SIGMOD, pages 445–456. ACM, 2013.

[16] Y. Fujiwara, M. Nakatsuji, T. Yamamuro, H. Shiokawa,
and M. Onizuka. Efficient personalized pagerank with
accuracy assurance. In KDD, pages 15–23, 2012.

[17] D. Gleich and M. Polito. Approximating personalized
pagerank with minimal use of web graph data. Internet
Mathematics, 3(3):257–294, 2006.

[18] D. F. Gleich and C. Seshadhri. Vertex neighborhoods, low
conductance cuts, and good seeds for local community
methods. In KDD, pages 597–605, 2012.

[19] G. Guennebaud, B. Jacob, et al. Eigen v3.
http://eigen.tuxfamily.org, 2010.

[20] J. He, M. Li, H.-J. Zhang, H. Tong, and C. Zhang.
Manifold-ranking based image retrieval. In ACM
Multimedia, pages 9–16, 2004.

[21] J. Jung, W. Jin, L. Sael, and U. Kang. Personalized
ranking in signed networks using signed random walk with
restart. In ICDM, 2016.

[22] J. Jung, K. Shin, L. Sael, and U. Kang. Random walk with
restart on large graphs using block elimination. ACM

Transactions on Database Systems.
[23] U. Kang and C. Faloutsos. Beyond ‘caveman communities’:

Hubs and spokes for graph compression and mining. In
ICDM, pages 300–309, 2011.

[24] T. H. Kim, K. M. Lee, and S. U. Lee. Generative image
segmentation using random walks with restart. In
Computer Vision - ECCV 2008, 10th European Conference
on Computer Vision, Marseille, France, October 12-18,
2008, Proceedings, Part III, pages 264–275, 2008.

[25] M. Kusumoto, T. Maehara, and K.-i. Kawarabayashi.
Scalable similarity search for simrank. In SIGMOD, pages
325–336. ACM, 2014.

[26] A. N. Langville and C. D. Meyer. A reordering for the
pagerank problem. SIAM Journal on Scientific Computing,
27(6):2112–2120, 2006.

[27] A. N. Langville and C. D. Meyer. Google’s PageRank and
Beyond: The Science of Search Engine Rankings.
Princeton University Press, 2011.

[28] S. Lee, S.-i. Song, M. Kahng, D. Lee, and S.-g. Lee.
Random walk based entity ranking on graph for
multidimensional recommendation. In RecSys, pages
93–100. ACM, 2011.

[29] Y. Lim, U. Kang, and C. Faloutsos. Slashburn: Graph
compression and mining beyond caveman communities.
IEEE Trans. Knowl. Data Eng., 26(12):3077–3089, 2014.

[30] P. A. Lofgren, S. Banerjee, A. Goel, and C. Seshadhri.
Fast-ppr: Scaling personalized pagerank estimation for
large graphs. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data
mining, pages 1436–1445. ACM, 2014.

[31] C. D. Meyer. Matrix analysis and applied linear algebra.
Siam, 2000.

[32] I. Mitliagkas, M. Borokhovich, A. G. Dimakis, and
C. Caramanis. Frogwild!: fast pagerank approximations on
graph engines. Proceedings of the VLDB Endowment,
8(8):874–885, 2015.

[33] L. Page, S. Brin, R. Motwani, and T. Winograd. The
pagerank citation ranking: Bringing order to the web.
Technical report, Stanford University, 1999.

[34] J.-Y. Pan, H.-J. Yang, C. Faloutsos, and P. Duygulu.
Automatic multimedia cross-modal correlation discovery. In
KDD, pages 653–658, 2004.

[35] Y. Saad. A flexible inner-outer preconditioned gmres
algorithm. SIAM Journal on Scientific Computing,
14(2):461–469, 1993.

[36] Y. Saad. Iterative methods for sparse linear systems. Siam,
2003.

[37] Y. Saad and M. H. Schultz. Gmres: A generalized minimal
residual algorithm for solving nonsymmetric linear systems.
SIAM Journal on scientific and statistical computing,
7(3):856–869, 1986.

[38] K. Shin, J. Jung, L. Sael, and U. Kang. Bear: Block
elimination approach for random walk with restart on large
graphs. In SIGMOD, 2015.

[39] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos.
Neighborhood formation and anomaly detection in
bipartite graphs. In ICDM, pages 418–425, 2005.

[40] H. Tong and C. Faloutsos. Center-piece subgraphs: problem
definition and fast solutions. In KDD, pages 404–413, 2006.

[41] H. Tong, C. Faloutsos, and J.-Y. Pan. Random walk with
restart: fast solutions and applications. KAIS,
14(3):327–346, 2008.

[42] L. N. Trefethen and D. Bau III. Numerical linear algebra,
volume 50. Siam, 1997.

[43] C. Wang, F. Jing, L. Zhang, and H. Zhang. Image
annotation refinement using random walk with restarts. In
Proceedings of the 14th ACM International Conference on
Multimedia, Santa Barbara, CA, USA, October 23-27,
2006, pages 647–650, 2006.

[44] Y. Wang and D. J. DeWitt. Computing pagerank in a
distributed internet search system. In Proceedings of the

Thirtieth international conference on Very large data
bases-Volume 30, pages 420–431. VLDB Endowment, 2004.

[45] J. J. Whang, D. F. Gleich, and I. S. Dhillon. Overlapping
community detection using seed set expansion. In CIKM,
pages 2099–2108, 2013.

[46] Y. Wu, R. Jin, and X. Zhang. Fast and unified local search
for random walk based k-nearest-neighbor query in large
graphs. In SIGMOD, pages 1139–1150, 2014.

[47] W. Xie, D. Bindel, A. Demers, and J. Gehrke.
Edge-weighted personalized pagerank: Breaking a
decade-old performance barrier. In KDD, pages 1325–1334.
ACM, 2015.

[48] Z. Yin, M. Gupta, T. Weninger, and J. Han. A unified
framework for link recommendation using random walks. In
ASONAM, pages 152–159. IEEE, 2010.

[49] A. W. Yu, N. Mamoulis, and H. Su. Reverse top-k search
using random walk with restart. Proceedings of the VLDB
Endowment, 7(5):401–412, 2014.

[50] F. Zhang. The Schur complement and its applications,
volume 4. Springer Science & Business Media, 2006.

[51] W. Zheng, L. Zou, Y. Feng, L. Chen, and D. Zhao. Efficient
simrank-based similarity join over large graphs. Proceedings
of the VLDB Endowment, 6(7):493–504, 2013.

[52] S. Zhu, L. Zou, and B. Fang. Content based image retrieval
via a transductive model. J. Intell. Inf. Syst., 42(1), 2014.

APPENDIX
A. DETAILS OF SLASHBURN

(a) Step 1 (b) Step 2 (c) Step 3

Figure 9: Hub selection in SlashBurn when dkne = 1 where
dkne indicates the number of selected hubs. Red nodes are hubs;
white nodes are spokes that belong to the disconnected compo-
nents; blue colored are nodes that belong to the giant connected
component after Step 1.

SlashBurn [23, 29] is a graph algorithm to concentrate the
non-zeros of the adjacency matrix by node reordering. Let n
be the number of nodes in a graph, and k be the hub selection
ratio whose range is between 0 and 1 where dkne indicates
the number of nodes selected by SlashBurn as hubs per iter-
ation. SlashBurn disconnects dkne hub nodes (high degree
nodes) from the graph, and divides the graph into the giant
connected component (GCC) and the disconnected compo-
nents. The nodes in the disconnected components are called
spokes. Then, SlashBurn reorders nodes such that the hub
nodes get the highest ids, the spokes get the lowest ids, and
the nodes in the GCC get the ids in the middle. SlashBurn
repeats this procedure on the GCC recursively until the size
of GCC becomes smaller than dkne. After SlashBurn is
done, the reordered adjacency matrix contains a large and
sparse block diagonal matrix in the upper left area, as shown
in Figure 3(c). Figure 9 illustrates the operation of Slash-
Burn when dkne = 1.

B. DETAILS OF PRECONDITIONED GM-
RES

Preconditioned GMRES [35, 42] computes the solution
r2 of the preconditioned linear system in Equation (11),
M−1Sr2 = M−1q̃2, where S is incomplete LU decomposed

Algorithm 5: Preconditioned GMRES [35, 42]

Input: matrix: S, vector: q̃2, preconditioner: L̃2 and Ũ2,
error tolerance: ε

Output: solution: r2 of the preconditioned system in
Equation (11)

1: t = Ũ−1
2 (L̃−1

2 q̃2)⇔ Ũ2\B(L̃2\F q̃2)
2: p1 = t/‖t‖2
3: for i=1:n2 do

find an orthonormal vector pi+1 against {p1, ...,pi} in
Ki+1 using the following iteration (lines 4∼10), called
Arnoldi Iteration [42]

4: v = Ũ−1
2 (L̃−1

2 (Spi))⇔ Ũ2\B(L̃2\F (Spi))
5: for j=1:i do
6: hj,i = pTj v

7: v = v − hj,ipj
8: end for
9: hi+1,i = ‖v‖2

10: pi+1 = v/hi+1,i

11: solve y∗ ← argminy ‖Hiy − ‖t‖2e1‖2 using a linear least

square method (e.g., QR decomposition)

12: r
(i)
2 = Piy

∗

13: if ‖Hiy
∗ − ‖t‖2e1‖2 < ε then

14: r2 ← r
(i)
2 ; break

15: end if
16: end for

17: return r2

into L̃2 and Ũ2, and M−1 = Ũ−1
2 L̃−1

2 is a preconditioner.
Algorithm 5 describes the procedure of preconditioned GM-

RES. It iteratively finds r
(i)
2 which minimizes the residual

‖M−1(Sr
(i)
2 − q̃2)‖2 such that r

(i)
2 is in the i-th order pre-

conditioned Krylov subspace Ki represented as follows:

Ki = {M−1q̃2,M
−1Sq̃2, ...,M

−1Si−1q̃2}.

Since the vectors consisting of the Krylov subspace Ki are
almost linearly dependent, directly finding the solution us-
ing the vectors as basis could be unstable. Instead, precon-

ditioned GMRES finds r
(i)
2 in a subspace generated by the

orthonormal vectors {p1, ...,pi} in Ki, which are iteratively
computed by Arnoldi Iteration (lines 4∼10). The solution

r
(i)
2 is Piy where Pi =

[
p1, ...,pi

]
is an orthonormal matrix

and y ∈ Rn. Then, the partial similarity transformation
of M−1S by Arnoldi Iteration at the i-th iteration is repre-
sented as follows:

(M−1S)Pi = Pi+1Hi

where Hi is a Hessenberg matrix in R(i+1)×i and hj,k is the
(j, k)-th entry of Hi. Since the columns of Pi are orthonor-

mal (i.e., PT
iPi = I) and r

(i)
2 = Piy, the original residual

is modified as follows:

‖M−1(Sr
(i)
2 − q̃2)‖2 ⇒ ‖Pi+1Hiy −M−1q̃2‖2

⇒ ‖Hiy −PT
i+1M

−1q̃2‖2 ⇒ ‖Hiy − ‖M−1q̃2‖2e1‖2

Note that we exploit p1 = (M−1q̃2)/‖M−1q̃2‖2 (lines
1∼2) for the last transformation. Consequently, precon-
ditioned GMRES finds y∗ which minimizes the modified
residual ‖Hiy − ‖M−1q̃2‖2e1‖2 using a linear least square
method such as QR decomposition (line 11); and then, it

computes the solution r
(i)
2 based on y∗ (line 12). Precondi-

tioned GMRES repeats the procedure for finding r
(i)
2 until

the residual is less than ε (line 13).

Note that we do not need to obtain M−1 = Ũ−1
2 L̃−1

2 if

M consists of triangular matrices. For example, when we
should perform an operation in the form of z = Ũ−1

2 (L̃−1
2 w)

(lines 1 and 4), forward and backward substitutions effi-
ciently compute z without matrix inversion [11], i.e., z =

Ũ2\B(L̃2\Fw) where \F and \B are defined as follows:

• Forward substitution \F : x = L−1b ⇔ x = L\Fb
where L is a lower triangular matrix.
• Backward substitution \B : x = U−1b ⇔ x = U\Bb

where U is an upper triangular matrix.

The time complexity of the substitution algorithms is the
same as that of matrix-vector multiplication [11]. Hence,
preconditioned GMRES efficiently finds r2 of the precondi-
tioned system without inverting L̃2 and Ũ2.

C. PROOF OF INVERSE INEQUALITY

Lemma 5. For a linear system Ax = b, if a matrix A is
invertible, then ||A−1||−1

2 ||x||2 ≤ ||Ax||2.

Proof. Since A is invertible, ‖x‖2 is bounded as follows:

‖x‖2 = ‖A−1Ax‖2 ≤ ‖A−1‖2‖Ax‖2.

Hence, ||A−1||−1
2 ||x||2 ≤ ||Ax||2.

D. PROOF OF LEMMA 1
Proof. The partitioned linear system in Equation (6) is

represented using Equations (3) and (4) as follows:[
H11 H12

H21 H22

] [
r1
r2

]
= c

[
q1

q2

]
(12)

r3 = cq3 −H31r1 −H32r2

Equation (12) is split into two equations:

H11r1 + H12r2 = cq1 (13)

H21r1 + H22r2 = cq2 (14)

Then, r1 is obtained from Equation (13) as follows:

H11r1 + H12r2 = cq1

⇒ H11r1 = cq1 −H12r2

⇒ r1 = H−1
11 (cq1 −H12r2).

If we plug the above equation of r1 into Equation (14), then
it is represented as follows:

H21r1 + H22r2 = cq2

⇒ H21(H−1
11 (cq1 −H12r2)) + H22r2 = cq2

⇒ H21(H−1
11 (cq1)) + (H22 −H21H

−1
11 H12)r2 = cq2

⇒ Sr2 = cq2 −H21(H−1
11 (cq1))

⇒ r2 = S−1(cq2 −H21(H−1
11 (cq1)))

where S = H22 − H21H
−1
11 H12. Note that H and H11 is

invertible if 0 < c < 1 since they are strictly diagonally
dominant; S is invertible because H is invertible [50].

E. PROOF OF LEMMA 2
Proof. Since we use GMRES to solve the linear sys-

tem of S, we first analyze the accuracy bound of GMRES.
Since GMRES stops the iteration when the relative residual

||Sr
(k)
2 −q̃2||2
||q̃2||2

≤ ε, the inequality is written as follows:

||Sr
(k)
2 − q̃2||2 ≤ ε||q̃2||2

⇒ ||Sr
(k)
2 − Sr∗2||2 ≤ ε||q̃2||2

⇒ ||S(r∗2 − r
(k)
2)||2 ≤ ε||q̃2||2

Note that H and H11 are invertible because those matrices
are diagonally dominant; this fact implies that S is invert-
ible [50], and we are able to apply Lemma 5 to the last
equation as follows:

||S−1||−1
2 ||r

∗
2 − r

(k)
2 ||2 ≤ ||S(r∗2 − r

(k)
2)||2 ≤ ε||q̃2||2

⇒ ||S−1||−1
2 ||r

∗
2 − r

(k)
2 ||2 ≤ ε||q̃2||2

⇒ ||r∗2 − r
(k)
2 ||2 ≤ ε||S

−1||2||q̃2||2

Since ||S−1||2 = σmin(S)−1 [31], ||r(k)2 − r∗2||2 is bounded as
follows:

||r∗2 − r
(k)
2 ||2 ≤

||q̃2||2
σmin(S)

ε

where σmin(S) is the smallest singular value of S.

F. PROOF OF LEMMA 3

Proof. Since H11r
∗
1 = cq1−H12r

∗
2 and H11r

(k)
1 = cq1−

H12r
(k)
2 , ||H11r

∗
1 −H11r

(k)
1 ||2 is represented as follows:

||H11r
∗
1 −H11r

(k)
1 ||2 = ||cq1 −H12r

∗
2 − cq1 + H12r

(k)
2 ||2

= ||H12r
∗
2 −H12r

(k)
2 ||2

= ||H12(r∗2 − r
(k)
2)||2

Since L2-norm is a sub-multiplicative norm [31], ||H12(r∗2 −
r
(k)
2)||2 ≤ ||H12||2||r∗2 − r

(k)
2 ||2. Hence ||H11r

∗
1 −H11r

(k)
1 ||2

is bounded as follows:

||H11r
∗
1 −H11r

(k)
1 ||2 ≤ ||H12||2||r∗2 − r

(k)
2 ||2

By Lemma 5, (||H−1
11 ||2)−1||r∗1−r

(k)
1 ||2 ≤ ||H11(r∗1−r

(k)
1)||2.

Hence, ||r∗1 − r
(k)
1 ||2 is bounded as follows:

||r∗1 − r
(k)
1 ||2 ≤ ||H

−1
11 ||2||H12||2||r∗2 − r

(k)
2 ||2.

By Lemma 2, ||r∗2 − r
(k)
2 ||2 ≤

||q̃2||2
σmin(S)

ε, and ||H−1
11 ||2 =

σmin(H11)−1 [31]. Therefore, ||r∗1 − r
(k)
1 ||2 is bounded as

follows:

||r∗1 − r
(k)
1 ||2 ≤

||H12||2||q̃2||2
σmin(H11)σmin(S)

ε.

G. PROOF OF LEMMA 4

Proof. From the triangular inequality and the submul-
tiplicative property of L2-norm, it is represented as follows:

‖r∗3 − r
(k)
3 ‖2 = ‖−H31r

∗
1 −H32r

∗
2 + H31r

(k)
1 + H32r

(k)
2 ‖2

= ‖H31(r∗1 − r
(k)
1) + H32(r∗2 − r

(k)
2)‖2

≤ ‖H31(r∗1 − r
(k)
1)‖2 + ‖H32(r∗2 − r

(k)
2)‖2

≤ ‖H31‖2‖r∗1 − r
(k)
1 ‖2 + ‖H32‖2‖r∗2 − r

(k)
2 ‖2

H. EXPERIMENTAL DATASETS
We give a brief description of the real-world datasets used

for experiments in Section 4.

• Slashdot1. This is the social network of users in the
technology news site Slashdot.
• Wikipedia2. This is the small network between arti-

cles of the English Wikipedia.
• Baidu3. This is the hyperlink network between articles

of the Chinese online encyclopedia Baidu.
• Flickr4. This is the friendship network of Flickr users.
• LiveJournal5. Nodes are users of LiveJournal, and

directed edges represent friendships.
• WikiLink6. This network consists of the wiki-links of

the English Wikipedia.
• Twitter7. This is the follower network from Twitter,

containing 1.4 billion directed follow edges between 41
million Twitter users.
• Friendster8. This is the friendship network of the

online social site Friendster.

I. EXPERIMENTS ON ACCURACY

0 50 100 150 200 250

Number of iterations

10
-25

10
-20

10
-15

10
-10

10
-5

10
0

L
2
-n

o
rm

 e
rr

o
r

BEST

BePI

Power

GMRES

Figure 10: Accuracy of BePI according to the number of iter-
ations. BePI achieves the highest accuracy and the fastest con-
vergence compared to other iterative methods.

We investigate the accuracy of each iterative method com-
pared to exact RWR solutions r∗ = cH−1q. We perform this
experiment on a small social network, the Physicians dataset
9, with 241 nodes and 1, 098 edges in order to compute H−1.
We select 100 seed nodes randomly, and measure average L2-
norm errors between exact RWR solutions r∗ and results r(i)

from each method with ε = 10−9 after i-th iterations (i.e.,

the errors are measured by computing ‖r∗−r(i)‖2). As seen
in Figure 10, our method BePI shows the best performance
in terms of accuracy compared to other iterative methods.
Furthermore, BePI converges rapidly with higher accuracy,
while power iteration and GMRES converge slowly. Note
that BePI is an exact method which can make the error
smaller than any given error tolerance. As shown in Fig-
ure 10, the error of our method monotonically decreases
and finally becomes smaller than the given error tolerance,

1http://dai-labor.de/IRML/datasets
2http://konect.uni-koblenz.de/networks/
link-dynamic-simplewiki
3http://zhishi.me
4http://socialnetworks.mpi-sws.org/data-wosn2008.html
5http://snap.stanford.edu/data/soc-LiveJournal1.html
6http://dumps.wikimedia.org/
7http://an.kaist.ac.kr/traces/WWW2010.html
8https://archive.org/details/friendster-dataset-201107
9http://moreno.ss.uci.edu/data.html#ckm

Table 5: Dataset statistics used in Appendix J.

Dataset Node Edge Description

Gnutella1 62,586 147,892 Peer-to-peer network
HepPH1 34,546 421,578 Coauthorship network

Facebook1 46,952 876,993 Social network
Digg1 279,630 1,731,653 Social network

1 http://konect.uni-koblenz.de/

which is also the property of the iterative method that we
exploit [37].

J. DETAILED COMPARISON WITH THE-
STATE-OF-THE-ART METHOD

10
-1

10
0

10
1

10
2

10
3

10
4

G
nutella

HepPH

Facebook

Digg

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
)

BePI
Bear

(a) Preprocessing time

10
0

10
1

10
2

10
3

10
4

G
nutella

HepPH

Facebook

Digg

M
e
m

o
ry

 u
s
a
g
e
 (

M
B

)

BePI
Bear

(b) Space for
preprocessed data

10
-2

10
-1

10
0

G
nutella

HepPH

Facebook

Digg

W
a
ll

c
lo

c
k
 t
im

e
 (

s
e
c
)

BePI
Bear

(c) Query time

Figure 11: Our method BePI significantly outperforms Bear,
the state-of-the-art preprocessing method [38], in terms of pre-
processing time and memory usage as shown in (a) and (b), and
shows faster query speed as in (c).

We compare our proposed method with Bear, the-state-of-
the-art preprocessing method [38]. Since Bear suffers from
the scalability issue in very large graphs as described in
Section 4, we perform this experiment on relatively small
graphs that Bear performs the preprocessing phase success-
fully. The datasets used in this experiments are summa-
rized in Table 5. As shown in Figure 11, BePI significantly
outperforms Bear in terms of preprocessing time, memory
usage, and query time.

K. EXPERIMENT ON TOTAL TIME

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Slashdot

W
ikipedia

Baidu

Flickr

LiveJournal

W
ikiLink

Twitter

Friendster

W
a

ll
c
lo

c
k
 t

im
e

 (
s
e

c
)

BePI
GMRES

Power
Bear

LU

Figure 12: Total running time comparison. For preprocessing
methods, preprocessing time and query time are included into
total running time. For iterative methods, only query time is
included. As presented in the figure, the total time of BePI is
smaller than those of other methods.

We measure the total running time for each method. For
preprocessing methods BePI, Bear, and LU, we consider
the preprocessing time and the query time of 30 queries
as the total running time. For iterative methods GMRES
and power iteration, we only consider the query time for
30 queries since they do not involve preprocessing steps. As
shown in Figure 12, our method BePI provides the best per-
formance among other competitors in terms of total time.

http://dai-labor.de/IRML/datasets
http://konect.uni-koblenz.de/networks/link-dynamic-simplewiki
http://konect.uni-koblenz.de/networks/link-dynamic-simplewiki
http://zhishi.me
http://socialnetworks.mpi-sws.org/data-wosn2008.html
http://snap.stanford.edu/data/soc-LiveJournal1.html
http://dumps.wikimedia.org/
http://an.kaist.ac.kr/traces/WWW2010.html
https://archive.org/details/friendster-dataset-201107
 http://moreno.ss.uci.edu/data.html#ckm

	Introduction
	Preliminaries
	Random Walk with Restart
	Iterative Methods for RWR
	Preprocessing Methods for RWR

	Proposed Method
	Overview
	BePI-B: Exploiting Graph Characteristics for Node Reordering and Block Elimination
	Node Reordering Based on Deadends and Hub-and-Spoke Structure
	Block Elimination

	BePI-B: Incorporating an Iterative Method into Block Elimination
	BePI-S: Sparsifying the Schur Complement
	BePI: Preconditioning a Linear System for the Iterative Method
	Theoretical Results
	Time Complexity
	Space Complexity
	Accuracy Bound

	Experiments
	Experimental Settings
	Preprocessing Cost
	Query Cost
	Scalability
	Effects of Sparse Schur Complement and Preconditioning
	Effects on Preprocessing Phase
	Effects on Query Phase

	Effects of the Hub Selection Ratio

	Related Works
	Conclusion
	References
	Details of SlashBurn
	Details of Preconditioned GMRES
	Proof of Inverse Inequality
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Experimental Datasets
	Experiments on Accuracy
	Detailed Comparison with the-State-of-the-Art Method
	Experiment on Total Time

