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ABSTRACT 

The medical research facilitates to acquire diverse type of data 
from the same individual for a particular cancer. Recent studies 
show that utilizing such diverse data results in more accurate 
predictions. The major challenge faced is how to utilize such 
diverse data sets in an effective way. In this paper, we introduce a 
multiple kernel based pipeline for integrative analysis of high-
throughput molecular and clinical data. We apply the pipeline on 
Ovarian cancer data from TCGA. After multiple kernel have been 
generated from weighted sum of individual kernels, it is used to 
stratify patients and predict clinical outcomes. We examine the 
clinical outcomes of each subtype to verify how well they cluster. 

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining;  I.2.6 [Artificial Intelligence]: Learning – Parameter 
learning  

General Terms 
Algorithms. 

Keywords 
Integrative analysis; Multiple kernel; Molecular data; Clinical 
data; Patient stratification 

1. INTRODUCTION 
Ovarian cancer is the fifth most common cancers diagnosed in 
females with overall five year survival rate only around 44%. The 
Cancer Genome Atlas (TCGA) [9] reports diverse genomic 
information with paired clinical information for more than 500 
cases of ovarian serous cystadenocarcinoma. In cancer data 

analysis, including ovarian cancer data, a stratification can be 
improved by integrative analysis of the multiple bio-clinical data. 
However, due to the complex relationship between the multiple 
data types, the integrative analysis is still a challenging task. 

The patient stratification is to find subgroups of patients to allow 
better detection and interpretation as well as predict outcomes in 
specific subgroup. Kim et al. [4] considers somatic mutation 
profile and exploited k-means clustering to identify the tumor 
subtypes. In their recent work [5], a compressed somatic mutation 
profile was suggested for fast comparison. Hofree et al. [2] has 
used genome-scale somatic mutation profiles in combination with 
a gene interaction network to carry out subgrouping of patients. 
Recently, Wang et al. [12] proposed a modified consensus 
clustering to carry out patient stratification for breast cancer 
patients. 

Analysis of one or few data types may not be sufficient for 
accurate stratification. Thus, efforts to integrate the molecular data 
were carried out. Thomas et al. [10] work presents two general 
class of heterogeneous data integration, i.e., Multiple Kernel 
learning and Bayesian network. Kim et al.  [3] proposed a graph 
based integrated framework using four genome data types to carry 
out molecular based classification of clinical outcomes. Sohn et al. 
[8] modeled the influence of multi-layered genomic features on 
gene expression traits by modeling an integrative statistical 
framework based on a sparse regression. Schafer et al. [7] 
integrated copy number and gene expression by a modified 
correlation coefficient and an explorative Wilcoxon test to find 
DNA regions of abnormalities. Mankoo et al. [6]  have applied 
multivariate Cox Lasso model and median time-to-event 
prediction algorithm on data set integrated from the four genomic 
data. Yuan et al. [13]  evaluated the predictive power of patient 
survival and binary clinical outcome using clinical data in 
combination with one molecular data.. 

Integrative analysis method that can cover heterogeneity of data 
types in molecular data and clinical data can beneficial in 
predicting the prognostics of patients via stratifying the patients in 
the different risk groups. Multiple kernel learning is well known 
for addressing various data heterogeneity. Moreover, Kernel 
methods, including multiple kernels, are well suited handling non-
linearity of high dimensional data by mapping data to feature 
space. 
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In this paper, we make the following contributions: 

1. Combines clinical data with multiple molecular data. 
We examine how adding more molecular information 
increases the prediction performance in stratifying ovarian 
cancer patients, and predicting tumor grade and patient 
survival time. 

2. Propose a multiple kernel based pipeline model to 
integrate multiple heterogeneous data types. The 
proposed model allows to analyze heterogeneous data i.e., 
combines data with diverse background distributions, 
relations, dimensions, and formats to enhance the statistical 
significance and thus, obtain more refined information.  

2. MATERIALS AND METHODS 
2.1 Datasets and Raw Mutation Scores 
Data are initially selected and downloaded 312 samples that 
contained all four genomic data types, i.e., copy number 
alternation, methylation, mRNA expression and the mutation 
information, from TCGA data portal [16] via TCGA assembler 
[14]and TCGA Firehose [17]. Clinical information of the 312 
samples is also downloaded from TCGA. The clinical data 
includes the survival time (days to death), age, tumor stage, tumor 
grade, vital status and neoplasm cancer status. 
 

2.2 Kernel Matrix Representing Molecular 
Information 
The patient-to-gene set matrix of the four data sources are used to 
create kernels using kernel functions. A feature function, ϕ(x), 
maps the original data feature x in the input space to a high-
dimensional feature space. A Kernel function is a function that 
corresponds to the inner product in an expanded feature space. 
The size of a kernel matrix is independent of the number of 
features and is solely dependent on the number of data. In practice, 
an explicit definition of feature function, ϕ(x), is not needed since 
they are tightly integrated in the definition of the kernel functions.  

The kernel functions we used are linear and radial basis function 
(RBF).  We explored the use of commonly used kernels including 
linear, sigmoid, polynomial and the radial basis function. We 
chose the kernel function that showed the best performance for 
each data type.  

2.3 Multiple Kernel Learning for Cancer 
Classification 

The kernel matrix constructed from each data types is further 
integrated to form a single kernel matrix using a multiple kernel 
learning approach. Several methods are suggested for integrating 
the kernels [1]. We take a two-step approach that first combines 
the kernels in a weighted linear fashion and then perform learning 
on the combined kernel. The kernel combination is defined as 
follows: 

 

 

where S is the number of kernels,  is the original feature vector 
of kernel s of sample i, and βn is the kernel coefficient of kernel s. 

 

To obtain optimal weights for kernel combination, we take 
the optimization approach suggested by Zien et al. [15]. In their 
approach, the kernel coefficient is determined by the efficacy of 
each of the kernel matrix containing sets learned by Least Square 
Support Vector Machine (LS-SVM). LS-SVMs are closely related 
to regularization networks and Gaussian processes but 
additionally emphasize and exploit primal-dual interpretations 
from the optimization theory [11]. The primal form of a LS-SVM 
is optimized by the following minimization problem: 

 

  

where w is the weight vector we are trying to learn, errs is the 
error variables that represent the value corresponding to 
misclassification in case of overlapping distribution, and γ is the 
regularization parameter that tackles data over fitting problem. 

2.4 Stratification Using Kernel K-means 
Stratification of patients can be done with clustering methods. 

We use kernel K-means on the generated multiple kernel matrix 
for stratifying the Ovarian cancer to subtypes. The multiple kernel 
matrix contains the similarity information about pairs of data in 
the combined feature space. Thus, when we apply the kernel k-
means to the multiple kernel matrix, data are clustered so that the 
clustering error is minimized in the combined feature space.  

3. RESULTS 
We report the results for validation and performance of combining 
the clinical features with the biological features by the multiple-
kernel on two important translational bioinformatics tasks: patient 
stratification and clinical predictions. 

3.1 Patient Stratification via K-means 
We performed the kernel k-means clustering to stratify 

ovarian cancer patients using the generated kernel matrices. We 
compared four data type combinations as input to the k-mean 
clustering: the first multiple kernel is constructed from only the 
molecular data types, the second is constructed from clinical 
information (i.e., age, stage, grade), the third is constructed by 
non-weighted linear combination of kernels of molecular as well 
as clinical data, and the fourth is construed by weighted linear 
combination of kernels of molecular and clinical data. 

 
Figure 1. Log rank statistic to determine the number of 
clusters (A) Molecular data (B) Clinical data (C) Molecular 
and clinical data with non-weighted linear kernel coefficient 
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(D) Molecular and clinical data with weighted kernel 
coefficient. 
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Figure 2. Kernel k-means clustering of the TCGA OV all 
molecular data.  
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Figure 3. Kernel k-means clustering for clinical data 
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Figure 4. Kernel k-means clustering of the TCGA OV all 
molecular data with clinical data with linear kernel 
combination  
 

To evaluate the clustering result, we performed survival analysis 
on each clusters, or subgroups, using the Cox proportional hazards 
regression model in the R survival package  for each of the data 
type combinations. Out of 312 patient samples, the clustering was 
carried out for 75% (231) of the samples and 25% (81) to 
determine the number of clusters, k. 

The value of k (i.e., the number of clusters) was determined using 
the log rank statistics. Figure 1 shows the different log rank 
statistic values obtained for different number of clusters. Figure  1 
(A) shows the plot for integrated molecular data indicating the 
best value for k being 5. Figure 1(B) is a graph for determining 
the k (i.e., 5) value for clinical data. Similarly, figure 1(C) and 
figure  1(D) are plots when molecular data is integrated with 
clinical without and with weighted kernel coefficient, results in 
best clusters for k=5 and k=6 respectively. We compared the 
survival times for these clusters using log-rank statistics and 
obtained the P-value. The P-value for all the above cases is less 
than 0.05. Thus, it shows that there exists a significant separation 
between the subgroups with respect to survival time. 

Setting k=5 in kernel k-means clustering, the p-value of the 
subtype separation for survival analysis is 0.02 for all molecular 
data types (figure 2), 0.0079 for clinical data (figure 3), 0.009 for 
integrated molecular and clinical data with linear kernel 
coefficient (figure 4). It can be observed that the clusters 
identified by integrating the clinical data are more predictive with 
log-rank p-value of 1.4 x 10-3. The size of the cluster formed is 
not uniform; however the method shows an ability to categorize 
the patient samples into sub groups that significantly differ in the 
survival time.  

4. CONCLUSION 
In this paper, we have developed a multiple kernel learning based 
pipeline for integrative analysis of heterogeneous data types and 
apply it on ovarian cancer data. The data types we look at are 
molecular data and clinical data. The model is used to carry out 
patient stratification. We use kernel k-means to perform 
stratification of patient for survival time, and tumor grade. 
Stratification is done considering different test cases including 
integrated molecular data, clinical data, and integration using 
linear combination. The patient stratification results for different 
test cases show that the integration of molecular and clinical data 
results in better pattern forming relation.  
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