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Abstract: The medical research facilitates to acquire a diverse data types from 
the same individual for a particular cancer. Major challenge is how to 
integratively analyse the multiple data types. In this paper, we introduce a 
multiple kernel based pipeline for integrative analysis of four genomic data and 
a set of clinical data. In the pipeline, multiple-kernel is generated from the 
weighted sum of individual kernels and is used to stratify patients and predict 
clinical outcomes. We apply the pipeline on ovarian cancer data from TCGA 
and examine intra similarities of clinical factors of each subtype and calculate 
log-rank statistics to verify how well they cluster. We also examined the power 
of molecular and clinical data in predicting dichotomised overall survival data 
and tumour grade. It was observed that the integration of various data types 
yields better stratification and higher prediction accuracy as compared to using 
individual data types. 
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1 Introduction 

Cancer is a disease with extreme complexity which alters the function of combinations of 
genes. It is believed to be an outcome of accumulated genetic changes (Aunoble et al., 
2000). Among various types of cancer, ovarian cancer is the fifth most common cancers 
diagnosed in females (Ries et al., 2007) with overall five-year survival rate only around 
44% (Cancer.Net, 2017). The Cancer Genome Atlas (TCGA) (2011) reports diverse 
genomic information with paired clinical information for more than 500 cases of ovarian 
serous cystadenocarcinoma. The genomic information includes copy number alteration 
(CNA), somatic mutation, gene expression, and DNA methylation. Understanding the 
genetic changes in cancer patients through this rich information allows for better 
diagnostics and treatment of cancer, including ovarian cancer. 

Integrative analysis of multiple perspectives of a patient helps in both patient 
stratification and clinical outcome prediction. Patient stratification and clinical outcome 
predictions both help the researchers in understanding and exploring the genomic 
characteristics in a relationship with their current phenotypes and thus to recognising 
opportunities for clinical improvement. In the case of cancer data analysis, including 
ovarian cancer data, an improved stratification and clinical prediction can be achieved by 
integrative analysis of the multiple bio-clinical data. However, due to the complex 
relationship between the multiple data types, the integrative analysis is still a challenging 
task. 

There are several works related to clinical outcome predictions. Wang et al. (2002) 
have used gene expression data to predict distant metastasis of lymph-node-negative 
primary breast cancer. They identified a 76-gene signature consisting of 60 genes for 
patients positive for oestrogen receptors (ER) and 16 genes for ER-negative patients. 
Teschendorff et al. (2006) proposed a gene expression classifier for ER positive breast 
cancer. Zhang et al. (2009) used copy number alterations in combination with gene 
expression to identify the genomic loci and their mapped genes, having a high correlation 
with distant metastasis capability of human breast cancer. Deneberg et al. (2010) used 
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gene specific and global methylation patterns predict outcome in patients with acute 
myeloid leukaemia. They also concluded in their work that global and gene specific 
methylation patterns are independently associated with the clinical outcome in AML 
patients. Nair et al. (2012) reported a comprehensive review on the clinical outcome 
prediction by the miRNA expression for numerous types of cancer. These approaches 
only integrated a smaller number of data types and failed to integrate with other levels of 
genomic data. 

On the other hand, for the patient stratification, biomarkers, genetic profiles, research 
data along with clinical information are used to find a subgroup of the patients thereby 
making easier to detect and interpret relationships as well as predict outcomes in a 
specific subgroup. Kim et al. (2014) consider somatic mutation profile and exploited k-
means clustering to identify the tumour subtypes. The sparsity of the mutation data was 
handled by applying Jaccard and Euclidean distance measures. Further, the Cox 
proportional hazards regression model was used to find the similarity between the 
derived subtypes and the patient survival time. In their recent work (Kim et al., 2015), a 
compressed somatic mutation profile was suggested for fast comparison. The profile 
utilised Gene-Ontology and non-negative matrix factorisation for condensing the 
mutation profile. To verify their work, stratification was performed on various cancer 
types. Hofree et al. (2013) have used genome-scale somatic mutation profiles in 
combination with a gene interaction network to carry out subgrouping of patients. 
Recently, Wang et al. (2014) proposed a modified consensus clustering to carry out 
patient stratification for breast cancer patients. The approach considered both numerical 
and categorical data for mRNA and miRNA data set. 

Analysis of one or few data types may not be sufficient for accurate predict or 
stratification. Thus, efforts to integrate the molecular data were carried out. Thomas and 
Sael (2015) present two general class of heterogeneous data integration, i.e., Multiple 
Kernel learning and Bayesian network, are detailed and discussed in the bioinformatics 
domain. Also, many problem-specific integrative approaches have been proposed to 
associate the molecular data with the clinical outcome. These include a software package 
implemented in R (Louhimo and Hautaniemi, 2011) to show the effect of DNA 
methylation and copy number alterations in gene expression of several known oncogenes 
for two cancer type glioblastoma multiforme and ovarian. Kim et al. (2012) proposed a 
graph based integrated framework using CNA, methylation, miRNA, and gene 
expression data to carry out a molecular based classification of clinical outcomes. In this 
approach, a single graph was constructed by determining the optimum linear combination 
coefficient from the multiple graphs obtained at different genomic level. Sohn et al. 
(2013) modelled the influence of multi-layered genomic features on gene expression 
traits by modelling an integrative statistical framework based on a sparse regression. The 
results showed that using CNA, miRNA, and methylation on gene expression in the 
predictive power for gene expression level is improved over a single data type based 
analysis. Schafer et al. (2009) approach integrated copy number and gene expression by a 
modified correlation coefficient and an explorative Wilcoxon test to find DNA regions of 
abnormalities. The recent work also includes model based prediction of clinical 
outcomes. Mankoo et al. (2011) have applied multivariate Cox Lasso model and median 
time-to-event prediction algorithm on data set integrated from the four genomic data 
types (CNA, methylation, miRNA, and gene expression data). Yuan et al. (2014) 
evaluated the predictive power of patient survival and binary clinical outcome using 
clinical data in combination with one molecular data: somatic copy number alteration, 
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DNA methylation, and mRNA, miRNA and protein expression. They showed a slight 
improvement in some cases when clinical information was combined with one of the 
molecular. Although this paper showed the predictive power of clinical data in 
combination with a molecular data, all available molecular data was not used 
integratively. 

An integrative analysis method that can cover heterogeneity of data types in 
molecular data and clinical data can beneficial in predicting the prognostics of patients 
via stratifying the patients in the different risk groups. Multiple kernel learning is well 
known for addressing various data heterogeneity. Moreover, Kernel methods, including 
multiple kernels, are well-suited for handling non-linearity of high dimensional data by 
mapping data to feature space (Bucak et al., 2014).  

In this paper, we make the following contributions: 

 Combines clinical data with multiple molecular data. We examine how adding more 
molecular information increases the prediction performance in stratifying ovarian 
cancer patients, and predicting tumour grade and patient survival time. 

 Propose a multiple kernel based pipeline model (Figure 1) to integrate multiple 
heterogeneous data types. The proposed model allows to analyse heterogeneous data, 
i.e., combines data with diverse background distributions, relations, dimensions, and 
formats to enhance the statistical significance and thus, obtain more refined 
information. 

 Propose the data pre-processing using patient-centred gene set analysis. It allows to 
handle the large heterogeneous tumour data by grouping them into much smaller set 
of pathways and biologic processes. 

Figure 1 Multi kernel learning based integrative pipelined model 
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2 Material and methods 

2.1 Datasets and raw mutation scores 

Data are initially selected and downloaded 312 samples that contained all four genomic 
data types, i.e., copy number alternation, methylation, mRNA expression and the 
mutation information, from TCGA data portal (http://tcga-data.nci.nih.gov/) via TCGA 
assembler (Zhu et al., 2008) and TCGA Firehose (http://gdac.broadinstitute.org/). The 
summary of the genomic data types and number of associated genes for each data type in 
the 312 samples are shown in Table 1. Clinical information of the 312 samples is also 
downloaded from TCGA. The clinical data includes the survival time (days to death), 
age, tumour stage, tumour grade, vital status and neoplasm cancer status. 

Table 1 Numbers of samples and features of data types for OV cancer 

Data Type Platform #Genes altered  
in 312 patient 

Union of  
considered genes 

Methylation Illumina Human Meth. 13,772 13,772 

CNA Agilent 1M 16,383 16,070 

mRNA expression AgilentG4502A 18,361 16,070 

Mutation WUSM 9039 9039 

Description of the data types and how each is further processed are provided in the 
following. For each DNA methylation sample, the percent signal that is methylated is 
described as beta value recorded for each sample locus. The beta values are continuous 
variables that range between 0 and 1 indicating the ratio of the intensity of the 
methylation (Liu et al., 2013). After downloading level three data from TCGA assembler 
(Zhu et al., 2008), the data is pre-processed and determined to be methylated, if they 
show a percentage of methylation (beta) greater than a certain threshold (0.3 for patient 
data) or unmethylated if the value falls below the threshold as discussed by Warden et al. 
(2013). Thus, the new data matrix constructed for the methylation has a score of 1, if a 
gene is methylated else set to 0. The level three data for copy number alternation (CNA) 
was obtained from the GISTIC (Beroukhim et al., 2007) analysis. GISTIC identifies 
genomic regions that are significantly gained or lost across a set of tumours. It contains 
data about the significant regions of amplification and deletion as well as which samples 
are amplified or deleted in each of these regions. The matrix element with a value of 0 
indicates no amplification or deletion above the threshold. Amplifications are positive 
numbers: 1 denotes amplification above the amplification threshold; 2 denotes 
amplifications larger to the arm level amplifications observed for the sample. Deletions 
are represented by negative table values: –1 represents deletion beyond the threshold; –2 
represents deletions greater than the minimum arm-level deletion observed for the 
sample. The data matrix generated from CNA data puts 1 if the gene is amplified or 
deleted and 0 if otherwise. The dataset downloaded for level 3 mRNA from TCGA 
Firehose (http://gdac.broadinstitute.org/) contains log2 ratio for the gene expression. The 
log2 ratio ranges from 0 to 16, representing relative gene expression levels. The level 2 
somatic mutation data download from TCGA is already in the required matrix format 
with the entries showing either 0 or 1 indicating the presence or absence of a mutation in 
the gene. 
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2.2 Gene sets and adjusted mutation scores 

We group the genes based on involvement in the same pathway or having the similar 
molecular signature, thus some of the genes that do not fall in these categories were 
filtered out. The total number of genes considered in this study are summarised in the last 
column of Table 1. 

Considering gene set takes into account the fact that genes do not act in isolation, but 
they interact with other genes through the complex system. Also, cancer occurs not in a 
single gene, but rather, a group of genes that interact amongst each other in the complex 
biological network (Kim et al., 2014, 2015). Moreover, the biological significance can be 
better analysed by considering the interaction between neighbouring genes. For the 
different data sources, this measure helps to construct a patient to geneset matrix 
containing the genomic information. We have considered the functional group 
information of genes initially downloaded from the Molecular Signatures Database 
(MSigDb) (Subramanian et al., 2005) and recreated to remove redundancy. In the 
MSigDB, we select the group information based on pathway (C2: 4722 gene sets) and 
based on motif (C3: 836 gene sets). MSigDB contains gene sets generated from KEGG 
(Kanehisa and Goto, 2000), Canonical Pathway (Liberzon et al., 2011), BIOCARTA 
(Nishimura, 2001) and REACTOME (Croft et al., 2014). The motif gene set contained in 
MSigDB are miRNA targets (MIR) and transcription factor target (TFT). 

We recreate the gene sets to generate unified gene groups with small overlaps while 
maximising the number of genes covered. We filter out the gene sets with more than 85% 
overlap as described in Algorithm 1. After filtering, 2099 gene sets remained and the 
gene sets cover 16,070 genes out of the initial 16,095 genes. 

Algorithm 1: Gene set selection 

 

Generated patient-to-gene set matrix contains gene sets as a new feature vector, where 
each entry is an aggregating value of the altered genes in the gene set. 



   

 

   

   
 

   

   

 

   

   156 J. Thomas and L. Sael    
 

    
 
 

   

   
 

   

   

 

   

       
 

2.3 Kernel matrix representing molecular information 

The patient-to-gene set matrixes of the four data sources are used to create kernels using 
kernel functions. A feature function, (x), maps the original data feature x in the input 
space to a high-dimensional feature space. A Kernel function is a function that 
corresponds to the inner product in an expanded feature space: k(xi, xj) =< (xi)  (xj) >. 
A kernel matrix is formed by computing kernel functions between all pairs of data. Thus, 
the size of a kernel matrix is independent of the number of features and is solely 
dependent on the number of data. In practice, an explicit definition of feature function, 
(x), is not needed since they are tightly integrated into the definition of the kernel 
functions. The kernel functions we used are linear and radial basis function (RBF). 
Details of linear and RBF kernels are as follows: Let i-th and j-th sample data be 
represented as vectors of adjusted mutation scores of each gene sets: xi and xj. A linear 
kernel of two samples is a dot product of their original feature vectors, xi and xj: 

 x , x x x .linear i j i jk     

A RBF kernel of two samples vectors xi and xj is defined as follows: 

   2 2x , x exp x x 2 ,RBF i j i jk     

where 
2

x xi j  is the squared Euclidean distance between the two original feature 

vectors and parameter σ controls the flexibility of the kernel. With smaller value for the 
parameter σ, the kernel matrix becomes closer to identity matrix while risking overfitting. 
On the other hand, larger values of parameter gradually reduce the kernel to a constant 
function, making it impossible to learn any non-trivial classifier (Shawe-Taylor and 
Cristianini, 2004). In our experiment, we use a separate validation data sets consisting of 
25% of total samples to determine the parameters of the kernels, such as the value of σ in 
RBF kernels. The choice of the kernel for different data sources is decided based on the 
existing study in the literature. 

We explored the use of commonly used kernels including linear, sigmoid, polynomial 
and the radial basis function. We chose the kernel function that showed the best 
performance for each data type. For mRNA, we select RBF kernel as in Gomes et al. 
(2010), the authors report in their work that the use of RBF kernel proved to be more 
effective as compared to linear, polynomial or other kernels. For a different combination 
of geneset, an accuracy of 92.59% was observed. The methylation data analysis (Zhang 
et al., 2015) shows that the use of SVM classifier with RBF kernel outperforms the k-
nearest neighbour classifier (k-NN) and a naive Bayes classifier with an accuracy of 
91.3%. In Thomas et al. (2014), the performance of RBF kernel is compared to the 
clinical kernel for the clinical data source. Out of the five case study carried out, it was 
observed that the RBF kernel outperforms clinical in three with an average accuracy of 
78.59%. In the case of CNV, we apply linear kernel, similar to Seoane et al. (2014) 
which uses linear kernel for CNV data source for classification and attain an accuracy of 
61%. For mutation data source, we apply RBF kernel, as in Pirooznia and Deng (2006) 
presents a detailed comparison result for linear, polynomial and RBF kernel functions for 
breast cancer mutation data. It is reported that the use of RBF kernel for classification  
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achieved a higher accuracy as compared to other kernels. For BRCA1-BRCA2 dataset, 
RBF attained an accuracy of 100% as compared to 93.3% (linear) and 86.6% (polynomial). 

2.4 Multiple kernel learning for cancer classification 

The kernel matrix constructed from each data types is further integrated to form a single 
kernel matrix using a multiple kernel learning approach. Several methods are suggested 
for integrating the kernels (Gönen and Alpaydın, 2011). We take a two-step approach 
that first combines the kernels in a weighted linear fashion and then perform learning on 
the combined kernel. The kernel combination is defined as follows: 

      
1

1

x , x x , x

subjected to 0 and 1,

S
s s

i j s s i j
s

S

s s
s
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 (1) 

where S is the number of kernels, x s
i  is the original feature vector of kernel s of sample i, 

and βn is the kernel coefficient of kernel s. 
To obtain optimal weights for kernel combination, we take the optimisation approach 

suggested by Zien and Ong (2007). In their approach, the kernel coefficient is determined 
by the efficacy of each of the kernel matrix containing sets learned by Least Square 
Support Vector Machine (LS-SVM). LS-SVMs are closely related to regularisation 
networks and Gaussian processes but additionally emphasise and exploit primal-dual 
interpretations from the optimisation theory (Suykens and Vandewalle, 1999). The 
primal form of a LS-SVM is optimised by the following minimisation problem: 
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  2subjected to w x 1 for 1, 2,...,T
i i iy b err i N       

where w is the weight vector we are trying to learn, errs is the error variables that 
represent the value corresponding to misclassification in case of overlapping distribution, 
and γ is the regularisation parameter that tackles data over fitting problem. 

The standard multiple kernel learning approach constructs the base kernels for  
each data type and determine their optimal kernel coefficient by solving equation (1)  
(Yu et al., 2012; Yeh et al., 2012). 
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The derived dual for the problem in equation (1) (Bach et al., 2004) is given as 
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The standard multiple kernel learning approach constructs the base kernels for each data 
type, and determine their optimal kernel coefficient by solving equation (1). Here, the 
optimisation problem is solved using semi-defined linear programming. The dual for the 
problem is computed by considering the problem (Dk), squaring the constraints δ, 

multiplying the constraints by 1/2 and performing substitution as 21

2
   leads to dual 

form of multiple kernel learning equation (1), here      x , x x , x .k i j k i k jk     This 

process uses transductive learning setting, where the kernel matrix is learned from data. 
Initially labelled training data is used to learn the good embedding, which is later applied 
to unlabelled test data. Considering semi-defined linear programming optimisation using 
SVM enables to handle the optimisation of convex cost functions and machine learning 
concerns, thus provides a powerful method for learning the kernel matrix (Lanckriet  
et al., 2004). 

2.5 Stratification using kernel k-means 

Stratification of patients can be done with clustering methods. We use kernel k-means on 
the generated multiple kernel matrix for stratifying the ovarian cancer to subtypes. The 
multiple kernel matrix contains the similarity information about pairs of data in the 
combined feature space. Thus, when we apply the kernel k-means to the multiple kernel 
matrix, data are clustered so that the clustering error is minimised in the combined 
feature space. The objective function of kernel k-means is defined as follows: 
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where πc denotes the clusters,   1
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 denotes a partitioning of points, mc denotes the 

centre of cluster πc, and c  denote the size of the cluster πc. The Euclidean distance 

between the data point,  x i , and the cluster center, mc, in the feature space is 

determined as follows (Lanckriet et al., 2004): 
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Here, the    x xi j   is computed using appropriate selected kernel functions. 

2.6 Clinical feature prediction process 

We also use the learned multiple kernel matrix for predicting clinical outcomes. For 
prediction, we again employ LS-SVM classifier. That is, using the multiple kernel as 
input, we run the LS-SVM to predict the survival time and the tumour grade of patients. 
The performance of the proposed model was evaluated on 312 samples in TCGA ovarian 
cancer data sets. Each of the samples contains sets of molecular data with matched 
clinical information. We split the 312 sample randomly so that 50% of the samples are 
assigned to the training set, 25% assigned to the validation set to learn the model 
parameters, and rest are assigned to the testing set to test the performance of the final 
model. For evaluations, we calculate the accuracy of survival prediction and area under 
the curve (AUC) of the receiver operating characteristic (ROC) curve for the tumour 
grade classification. The curves were constructed by plotting true positive rate 
(Sensitivity) in function of the false positive rate (100-Specificity) for different selected 
threshold for the tumour grade parameter. We selected the threshold range from 0.2 to 
0.9. Each point on the ROC curve denotes a sensitivity/specificity pair corresponding to a 
selected decision threshold. The area under the curve specifies the ability of the test to 
correctly classify high grade and low-grade tumour. The AUC value is computed by a 
non-parametric method based on constructing trapezoids under the curve as an 
approximation of area. 

3 Results 

We report the results of validation and performance of combining the clinical features 
with the biological features by the multiple-kernel on two important translational 
bioinformatics tasks: patient stratification and clinical predictions. 

3.1 Patient stratification via k-means 

We performed the kernel k-means clustering to stratify ovarian cancer patients using the 
generated kernel matrices. We compared four data type combinations as input to the k-
mean clustering: the first multiple kernel is constructed from only the molecular data 
types listed in Table 1, the second is constructed from clinical information (i.e., age, 
stage, grade), the third is constructed by a non-weighted linear combination of kernels of 
molecular as well as clinical data, and the fourth is construed by weighted linear 
combination of kernels of molecular and clinical data. 

To evaluate the clustering result, we performed survival analysis on each cluster, or 
subgroups, using the Cox proportional hazards regression model in the R survival 
package (Therneau, 2014) for each of the data type combinations. Out of 312 patient 
samples, the clustering was carried out for 75% (231) of the samples and 25% (81) to 
determine the number of clusters, k. 

The value of k (i.e., the number of clusters) was determined using the log rank 
statistics. Figure 2 shows the different log rank statistic values obtained for a different 
number of clusters. Figure 2(A) shows the plot for integrated molecular data indicating 
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the best value for k is 5. Figure 2(B) is a graph for determining the k (i.e., 5) value for 
clinical data. Similarly, Figure 2(C) and 2(D) plots results when molecular data is 
integrated with clinical without and with weighted kernel coefficient, results in best 
clusters for k = 5 and k = 6 respectively. We compared the survival times for these 
clusters using log-rank statistics and obtained the P-value. The P-value for all the above 
cases is less than 0.05. Thus, it shows that there exists a significant separation between 
the subgroups with respect to survival time. 

Figure 2 Log rank statistic to determine the number of clusters (A) Molecular data (B) Clinical 
data (C) Molecular and clinical data with non-weighted linear kernel coefficient  
(D) Molecular and clinical data with weighted kernel coefficient 

 

Setting k = 5 in kernel k-means clustering, the p-value of the subtype separation for 
survival analysis is 0.02 for all molecular data types (Figure 3(a)), 0.0079 for clinical 
data (Figure 4(a)), 0.009 for integrated molecular and clinical data with non-weighted 
kernel coefficient (Figure 5(a)), 0.0014 for integrated molecular and clinical data with 
weighted kernel coefficient (Figure 6(a)). It can be observed that the clusters identified 
by integrating the clinical data are more predictive with log-rank p-value of 1.4  10–3. 
The size of the cluster formed is not uniform, however, the method shows an ability to 
categorise the patient samples into sub groups that significantly differ in the survival 
time. In addition, to separating the patient according to survival time with significant 
statistics the subgroups are correlated to tumour grade. 

Figure 3 Kernel k-means clustering of the TCGA OV all molecular data reveals (a) five 
molecular subtypes (clusters) (b) tumour grade for each subtype 
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Figure 4 Kernel k-means clustering for clinical data 

 

Figure 5 Kernel k-means clustering of the TCGA OV all molecular data with clinical data with 
linear kernel combination reveals (a) five molecular subtypes (clusters) (b) tumour 
grade for each subtype 

 

Figure 6 Kernel k-means clustering of the TCGA OV all molecular data with clinical data with 
optimised weights reveals (a) six molecular subtypes (clusters) (b) tumour grade for 
each subtype 
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In addition to mean survival time the clusters also show resembles in two other clinical 
features that are vitalstatus and neoplasmcancerstatus. The vitalstatus status is 
categorised into two based on whether the patient current state is deceased or living. 
Similarly, the neoplasmcancerstatus is grouped into two patient samples with tumour or 
tumour free. Note that the missing field in neoplasmcancerstatus is indicating the 
unavailability of information. 

It is observed that the combined molecular data and clinical data although are able to 
carry out a clear distinction between clusters in terms of mean survival time but lack the 
distinction in terms of vitalstatus and neoplasmcancerstatus summarise in Table 2 and 
Table 3 respectively. On the other hand, the results obtained when the clinical data is 
combined with molecular data are different as reported in Table 4 and Table 5. Table 4 
shows results for the linear combination of kernels. It is observed that a distinct 
stratification can be obtained for the vitalstatus, but not in the case of 
neoplasmcancerstatus. Table 5 reports the results with optimised kernel coefficient used 
to form the kernel matrix. It is observed that the stratification of the patients is more clear 
for both vitalstatus and neoplasmcancerstatus. 

Table 2 Patient stratification using molecular data 

Cluster Size Avg. age 
Vital status Neoplasm cancer status 

Deceased Living With tumour Tumour free Missing 

1 33 61.24 13 (39.39) 20 (60.61) 18 (54.54) 11 (33.33) 4 (12.12) 

2 48 56.96 27 (56.25) 21 (43.75) 27 (56.25) 10 (20.83) 11 (22.92) 

3 50 60.34 31 (62.0) 19 (38.0) 37 (74.0) 10 (20.0) 3 (6.0) 

4 47 62.47 34 (72.34) 13 (27.66) 36 (76.59) 6 (12.77) 5 (10.64) 

5 53 59.87 31 (58.49) 22 (41.51) 30 (56.60) 17 (32.08) 6 (11.32) 

Table 3 Patient stratification using clinical data 

Cluster Size Avg. age 
Vital status Neoplasm cancer status 

Deceased Living With tumour Tumour free Missing 

1 50 49.28 30 (60.0) 20 (40.0) 30 (60.0) 14 (28.0) 6 (12.0) 

2 64 71.22 38 (59.37) 26 (40.63) 39 (60.94) 17 (26.56) 8 (12.5) 

3 45 68.24 27 (60.0) 18 (40.0) 30 (66.67) 9 (20.0) 6 (13.33) 

4 72 52.61 51 (70.83) 31 (43.05) 49 (68.06) 14 (19.44) 9 (12.5) 

Table 4 Patient stratification with linear kernel weights using molecular data and clinical data 

Cluster Size Avg. age 
Vital status Neoplasm cancer status 

Deceased Living With tumour Tumour free Missing 

1 46 55.07 0 (0.0) 46 (100) 15 (32.61) 25 (54.35) 6 (13.04) 

2 30 59.23 0 (0.0) 30 (100) 12 (40.0) 15 (50.0) 3 (10.0) 

3 108 60.74 108 (100) 0 (0.0) 91 (84.26) 4 (3.70) 13 (12.04) 

4 24 63.29 24 (100) 0 (0.0) 22 (91.67) 0 (0.0) 2 (8.33) 

5 23 64.87 4 (17.39) 19 (82.61) 8 (34.78) 10 (43.48) 5 (21.74) 

 



   

 

   

   
 

   

   

 

   

    Multi-kernel LS-SVM based integration bio-clinical data analysis 163    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 5 Patient stratification with optimised kernel weights using molecular data and clinical 
data 

Cluster Size Avg. age 
Vital status Neoplasm cancer status 

Deceased Living With tumour Tumour free Missing 

1 15 59.53 1 (6.67) 14 (93.33) 4 (26.67) 10 (66.67) 1 (6.67) 

2 19 63 19 (100) 0 (0.0) 17 (89.47) 0 (0.0) 2 (10.53) 

3 37 67.38 37 (100) 0 (0.0) 33 (89.19) 0 (0.0) 4 (10.81) 

4 52 56.60 52 (100) 0 (0.0) 41 (78.85) 3 (5.76) 8 (15.38) 

5 81 58.09 0 (0.0) 81 (100) 29 (35.80) 40 (49.38) 12 (14.81) 

6 27 61.11 27 (100) 0 (0.0) 24 (88.89) 1 (3.70) 2 (7.41) 

3.2 Clinical outcome prediction using molecular data 

The observations from patient stratification section motivate us to consider integrated 
molecular data, clinical data, and their combinations. The model is evaluated on a set of 
dichotomised overall prediction using an LS-SVM. We carry out a prediction for two 
characteristic feature survival risk and tumour grade. The survival risk is divided into two 
based on high risk and low risk periods. The high risk considers cases where the survival 
time is lower than median survival time, whereas, low risk considers cases where 
survival time is higher than median. For the selected samples from TCGA data the 
median survival time is set to 998 days. We also perform prediction on high and low 
grade tumour using molecular data, clinical data and their combinations. The low grade 
contains samples with tumour grade of type G1 or G2 whereas, high grade contains 
samples corresponding to type G3 and G4 (http://www.cancer.gov/cancertopics/fact 
sheet/Detection/tumor-grade). 

Figure 7 Area under curve for high vs. low grade classification of OV 

 

Figure 7 shows the performance behaviour of the model summary of the prediction when 
molecular data are considered in isolation and when all molecular data and clinical 
features are integrated. It is observed that high AUC values of 0.8217, 0.8449, 0.8538, 
0.8718 and 0.8937 are obtained for CNA, methylation, clinical, non-weighted integrated 
combination and weighted integrated data respectively. These observations also help us 
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to infer some biological information. For the patient samples, in which the changes in 
tumour samples are due to the structural variation in the chromosome like a copy number 
variation or methylation seems to have a slightly higher influence on high or low grade 
clinical predictions. The tumour samples with functional changes like mutation and 
mRNA also directly relate and contribute towards the classification of clinical outcome. 
For the developed model, methylation performed better in comparison to other molecular 
data. Overall, the integration of the different data types improved the prediction accuracy. 

The results for high risk and low-risk survival are summarised in Table 6 and Table 7 
with accuracy as the performance measure. The notation used in these tables are TP 
stands for a true positive, FP stands for a false positive, TN for a true negative, FN for a 
false negative, Spec. for specificity and Sens. for sensitivity. The accuracy is the 
proportion of true results (both true positives and true negatives) among the total number 
of cases examined. Table 6 reports the results for molecular data and their integration. It 
summarises the behaviour of individual data set in prediction accuracy. Amongst the 
individual molecular data CNA is able to predict low risk and high risk patient for nearly 
71% of the samples. Next, in order to determine the behaviour of data type when 
integrated with clinical data experimentation were carried out, the results are reported in 
Table 7. The results show an overall increase in accuracy by integration: for the low risk 
vs. high risk survival classification. These findings are useful as they suggest that some 
biological information may be fused to various data sources from different genomic 
levels. Thus, integration of these independent data types increases the chances of success 
in cancer outcome predictions. 

Table 6 Patient survival risk prediction with individual data types 

Data types TP FP TN FN Spec. Sens. Acc. 

CNA 0.6904 0.3095 0.7368 0.2632 74.36 68.29 71.25 

Mutation 0.6667 0.3333 0.7105 0.2895 71.79 65.85 68.75 

Methylation 0.6905 0.3095 0.7105 0.2895 72.5 67.5 70 

mRNA 0.6428 0.3571 0.6842 0.3158 69.23 63.41 66.25 

Clinical 0.7143 0.2857 0.73684 0.2632 75.0 70.0 72.5 

CNA+Mutation+ 
mRNA Methylation 0.7381 0.2619 0.7368 0.2632 75.61 71.79 73.75 

Table 7 Patient survival risk prediction with individual data types and clinical 

Data types TP FP TN FN Spec. Sens. Acc. 

CNA+clinical 0.7143 0.2857 0.7368 0.2632 75 70 72.5 

Mutation+clinical 0.6667 0.3333 0.7368 0.2632 73.68 66.67 70 

Methylation+clinical 0.7143 0.2857 0.7105 0.2895 73.17 69.23 71.25 

mRNA+clinical 0.6429 0.3571 0.7368 0.2632 72.97 65.12 68.75 

CNA+Mutation+ 
Methylation+mRNA+ 
Clinical 

0.7619 0.2381 0.7632 0.2368 78.05 74.36 76.25 
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4 Conclusion 

In this paper, we have developed a multiple kernel learning based pipeline for integrative 
analysis of heterogeneous data types and apply it on ovarian cancer data. The data types 
we examined are molecular data and clinical data. The model is used to carry out patient 
stratification and clinical outcome prediction. We use kernel k-means to perform 
stratification of patients and examine inter-cluster dissimilarity of survival time, 
vitalstatus and neoplasmcancerstatus. Stratification is done considering different test 
cases including integrated molecular data, clinical data, integration using linear non-
weighted combination and integration using weighted kernel coefficient combination. 
The patient stratification results for different test cases show that the integration of 
molecular and clinical data results in a better pattern forming relation. The clinical 
outcome prediction is done for tumour grade and survival risk. In the case of tumour 
grade, a better AUC of 0.8937 was achieved for weighted kernel combination in 
comparison to 0.8538 considering only clinical data. For survival risk prediction it was 
observed that when molecular data are integrated with clinical data the overall prediction 
of the system is improved. This work concludes that integration of molecular data along 
with clinical data not only helps in carrying out better patient stratification but also 
improves the prediction accuracy of the model. 
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