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Abstract: In this work, we propose a LMDS-based binding-site search for
improving the search speed of the Patch-Surfer method. Patch-Surfer is efficient
in recognition of protein-ligand binding partners, further speedup is necessary to
address multiple-user access. Futher speedup is realized by exploiting LMDS. It
computes embedding coordinates for data points based on their distances from
landmark points. When selecting the landmark points, we adopt two approaches
- random and greedy selection. Our method approximately retrieves top-k results
and the accuracy increases as we exploit more landmark points. Although two
landmark selection approaches show comparable results, the greedy selection
shows the best performance when the number of landmark points is large. Using
our method, the searching time is reduced up to 99%, and it retrieves almost 80%
of exact top-k results. Additionally, LMDS-based binding-site search+ improves
the retrieval accuracy from 80% to 95% while sacrificing the speedup ratio from
99% to 90% compared to Patch-Surfer.
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1 Introduction

Increasing number of protein structures of unknown function necessitates computational
methods for characterizing protein tertiary structures. When the sequence similarity of
protein of unknown functions and those of known function are low, typical sequence
database searches are not enough to predict the function of unknown protein structures
(Abascal & Valencia, 2003; Lee et al., 2007; Hawkins et al., 2008; Hawkins & Kihara,
2007). As an alternative approach, structural information of proteins is used as a legitimate
analysis strategy (Gibrat et al., 1996; Shindyalov & Bourne, 1997; Singh & Brutlag, 2008).
One approach of characterizing proteins with structural information is through prediction
of which ligands are likely to bind to a protein, which is a major task of molecular function
of proteins (Venkatraman et al., 2009). (Figure 1 shows the examples of protein with
ligand-binding site). However, the complex nature of protein ligand interactions makes it
difficult to predict whether a ligand molecule binds to a protein or not. In the previous work,
Sael and Kihara (Sael & Kihara, 2010), have observed geometric and physicochemical
complementarity between the ligand and its binding site in multiple cases. Accordingly,
they proposed a method for finding ligand molecules which bind to a local surface site of
a protein by finding similar local pockets of known binding ligands in the protein structure
database (Chikhi et al., 2010).

Figure 1 The examples of protein with its ligand binding site

Sael and Kihara (Sael & Kihara, 2012b) also suggested a local surface comparison
method, Patch-Surfer, for more accurate prediction of whether a ligand molecule binds to
a query protein (Sael & Kihara, 2012b). It represents a binding pocket as a combination of
segmented surface patches, each of which is characterized by four representative features:
1) geometrical shape, 2) electrostatic potential, 3) hydrophobicity, and 4) concaveness.
The shape and the physicochemical properties of surface patches are represented using
the 3D Zernike Descriptors (3DZDs) (Canterakis, 1999). To compare two pockets, patches
of given pockets are matched by a modified weighted bipartite matching algorithm and
their similarity are evaluated based on a distance function which computes and combines
the Euclidean distances of the patch surface features in terms of the four characteristics.
However, computing the similarity of pockets is complex, thus finding the local ligand-
binding sites based on the distance function takes nontrivial amount of time.

In this paper, we propose an efficient local binding-site search that improves the
search speed of the Patch-Surfer, called LMDS-based binding-site search and LMDS-
based binding-site search+. We exploit Landmark Multi-Dimensional Scaling (LMDS),
which is an efficient version of MDS that is popularly used for efficiently representing
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high-dimensional datasets. It computes embedding coordinates for data points based on
their distances from a subset of data, landmark points. When selecting the landmark
points in LMDS-based binding-site search, we adopt two approaches - random selection
and greedy selection. According to our experimental result, LMDS-based binding-site
search approximately retrieves top-k results and the accuracy increases as we exploit more
landmark points. Although two landmark selection approaches show comparable results, the
greedy selection shows the best performance when the number of landmark points is large.
Using LMDS-based binding-site search with random or greedy selection, the searching time
is reduced up to 99%, and it retrieves almost 80% of exact top-k results. We additionaly
propose LMDS-based binding-site search+, which further improves the retrieval accuracy
by compromising the efficiency. LMDS-based binding-site search+ retrieves k’ nearest
neighbors (k′ > k) and finds k nearest neighbors among them. This approach improves the
retrieval accuracy from 80% to 95% while sacrificing the speedup ratio from 99% to 90%
compared to Patch-Surfer.

This paper is organized as follows. We briefly discuss related works about protein
structure search including the prediction of ligand-binding site (Section 2). Then, we provide
details on the proposed method, LMDS-based binding-site search, and its extension, LMDS-
based binding-site search+ (Section 3). Finally, we provide experimental results to verify
the efficiency of our approaches (Section 4), and conclude with future work (Section 5).

2 Related works

Binding ligand prediction: Ligand binding plays an important role of proteins in a cell
and thus provides evidences of protein function in the Gene Ontology (GO) categories
(Ashburner et al., 2000). Also, binding ligand prediction has various application such as
computational drug discovery (Rosenberg & Goldblum, 2006) and protein design (Samish
et al., 2011).

The binding partner of an uncharacterized protein can be predicted by evaluating the
similarity of whole protein structure (Skolnick & Brylinski, 2009) or finding the binding
pocket to those of known proteins-ligand interactions in the database (Morris et al., 2005;
Sael & Kihara, 2012b; Kim et al., 2012). The pocket comparison approach is beneficial in
that it can detect similar pockets independent of homologous relationship of proteins. There
have been several works for pocket comparison, such as Catalytic Site Atlas (Porter et al.,
2004), AFT (Arakaki et al., 2004), and SURFACE (Ferre et al., 2004). Binding pockets are
often represented by the positions of the residues or psedocenters in the pockets, and often
the root mean square deviation (RMSD) of the residue positions of the searched pocket
and the query protein is used to evaluate their similarity. There are also works that exploit
geometric hashing to compare conformation of pseudocenters of ligand-binding sites (Gold
& Jackson, 2006; Shatsky et al., 2006).

Surface representation of a binding pocket: As an alternative approach to the
residue/pseudocenter representations, binding pockets can be represented by protein surface
(Sael & Kihara, 2009; Kahraman et al., 2010; Chikhi et al., 2010). The surface representation
describes geometrical and physicochemical properties of a pocket on a continuous surface.
The eF-seek method (Kinoshita et al., 2007) represents a protein surface as a graph with
nodes charactering local geometry and the electrostatic potential. Spherical harmonics based
representation is also popular (Morris et al., 2005; Kahraman et al., 2010). Pocket-Surfer
is a rotation invariant binding pocket comparison method which represents global surface
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shape and the electrostatic potential of binding pockets using 3DZD (Chikhi et al., 2010;
Kim et al., 2012). It allows efficient pocket database search. However, binding pockets of the
same ligand often shows some variation in their shape and physicochemical properties. To
resolve this problem, an extension of Pocket-Surfer, called the Patch-Surfer, was proposed.
It has shown to have better performance in accuracy, but with sacrifice of the speed (Sael
& Kihara, 2012b). We will provide more details in the next section.

Multi-Dimensional Scaling (MDS): Metric-preserving dimensionality reduction has
been an important task in data analysis and machine learning. Given proximity data which
consists of dissimilarity information for all pairs of objects, Multi-Dimensional scaling
(MDS) (Cox & Cox, 2000) embeds the objects as points in a low-dimensional Euclidean
space, while preserving the geometry as precisely as possible. The time complexity of
solving MDS is approximately O(kN2) where N is the number of data points and k is
the dimension of the embedding. Using MDS, we can represent protein database based
on predefined distance function where they are represented as a complex format such
that calculation of distance between queries to all feature vectors in the database is not
necessary. Figure 2 is the plotting result of 100 randomly selected proteins’ pockets where
the dimension of the embedded coordinates is two and three. Landmark MDS (Platt, 2005)
is a variant of classical MDS algorithm based on Nymstrom algorithm, to deal with a large
number of data points. It preserves all of the attractive properties of the classical MDS
algorithm, but is more efficient than the classical MDS algorithm. The time complexity of
Landmark MDS is essentially linear in the number of data points.

Figure 2 The plotting result of sample dataset; x-axis and y-axis is the first two and three
dimensions.

3 Methods

In this section, we first provide a brief description of Patch-Surfer, which searches a database
of pockets with known binding partners and finds similar pockets to the query. Then, the
description of Landmark MDS and our algorithm, LMDS-based binding-site search, for
more efficient top-k retrieval is provided.
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3.1 Patch-Surfer method

Patch-Surfer (Sael & Kihara, 2012b) is local surface comparison method that does not
require pre-alignment of query pockets to the pockets in the database. With the search
results, Patch-Surfer predicts which ligand molecule is likely to bind to the query protein.
Given a query protein structure, first surface region of the binding pocket is extracted. If
the binding pocket of the query protein is unknown, binding pocket prediction methods can
be used. The selected pocket is divided into surface patches represented as four features:
geometrical shape, electrostatic potential, hydrophobicity, and concaveness (Sael & Kihara,
2012b). For representation of the four features, 3D-Zernike Descriptor (3DZD) is used
(Canterakis, 1999; Venkatraman et al., 2009). Thus, each pocket is represented as a set of
surface patches (Sael & Kihara, 2009).

The 3DZD is a series expansion of a 3D function allowing compact and rotationally
invariant representation of a 3D object. According to Sael and Kihara (Sael & Kihara,
2012b), to obtain the 3DZDs for a patch, a patch is mapped on a 3D grid and grid points
overlapping with the patch are filled with either one for indicating the geometrical shape or
their physicochemical measurement values on the particular location. After that, the grid
with the assigned values is considered as a 3D function which is expanded into a series in
terms of Zernike-Canterakis basis defined as follows (Canterakis, 1999):

Zmnl(r, ϑ, ϕ) = Rnl(r)Y
m
l (ϑ, ϕ) (1)

where−l < m < l, 0 ≤ l ≤ n, (n− l) is even, Y ml (ϑ, ϕ) are spherical harmonics, andRnl
are radial functions constructed to convert Zmnl(r, ϑ, ϕ) to polynomials in the Cartesian
coordinates,Zmnl(x). To obtain the 3DZD of f(x), 3D Zernike moments need to be computed
first. They are defined by expanding the orthonormal bases as follows:

Ωmnl =
3

4π

∫
|x|≤1

f(x)Z̄mnl(x)dx (2)

Then, the 3DZD, Fnl, is computed by normalizing Ωmnl as follows:

Fnl =

√√√√ m=l∑
m=−l

(Ωmnl)
2 (3)

where n is the order of 3DZD determining the resolution of the descriptor. The norms of
the moments make the descriptor invariant to rotation. For each pair of n and l, 3DZD has
a series of invariants, the numbers in the vector of 3DZD, where n is ranged from 0 to the
predefined order.

After generation of descriptors for each of the patches, the query pocket is compared to
the known pockets in the database where each pocket is a set of surface patches. To compare
the query pocket and a pocket in the database (Figure 3), similar patches between the two
pockets are determined by a modified bipartite matching algorithm (Step. B). Next, using
four features represented as 3DZDs with assigned values, the weighted average distance is
computed between matched pairs of patches (Step. C). Then, the relative position difference
is computed based on patch distances (Step. D). Finally, the weighted sum of the result
scores from step C and D is used as their final distance.
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Figure 3 The process of computing similarity between proteins in Patch Surfer. Reproduced from
figure 2 (Sael & Kihara, 2012b).

The Patch-Surfer retrieves top-k similar proteins in terms of the four characteristics
of local binding-sites which are known to be important in recognition of binding partners.
However, this introduces complexity in the computation. First of all, a protein is represented
a set of 3DZDs (or vectors), which make comparison much more complex than comparing
two vectors as in Pocket-Surfer. Also, the number of available protein structure continues
to grow.

3.2 Landmark MDS

As aforementioned, the computational complexity of classical MDS is expensive, since
distance matrix is usually not sparse and the computational complexity of the Eigen value
decomposition is O(n3) where the scalability of dataset is n. To resolve this problem,
Landmark MDS (LMDS) can be used. LMDS preserves all properties of classical MDS
and allows efficient computation as well. Based on a dissimilarity matrixD of l data points,
the goal is to embed them inm-dimensional Euclidean space. Specifically, Landmark MDS
works in four steps:

1 Select l landmark points.

2 Apply classical MDS to find an embedding of the l landmark points in Rm.

3 Compute the embedding coordinates of the remaining points based on distances to the
embedded landmark points.

4 Apply PCA normalization.
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Here are more details of each step (Algorithm 1).
Step 1. For selecting landmark points, we take two approaches: 1) random selection

and 2) greedy selection. For random selection, a set of points are randomly selected without
any duplication. For greedy selection, we first randomly select a small set of points as seed
points. After that, landmark points are selected one at a time from all unused data points.
At each selection, each new landmark point maximizes the minimum distance to any of the
existing landmark points.

Algorithm 1: Greedy selection
Data: All data points D
Result: Landmark points L

1 L = φ
2 L = L ∪Rand(linit, [0, n])
3 while |L| < l do
4 for i = 1 : n do
5 d[i] = Min(L, i)
6 end
7 x = arg maxj(d[j])
8 L = L ∪ x
9 end

10 return L

where n is the number of data points, l is the number of landmark points, linit is the
number of seed points,Rand(linit, [0, n]) returns indexes of linit randomly selected points
from the range of [0, n] as seeds and Min(L, x) returns the minimum distance from any
item in L to given point x.

Step 2. This step follows the classical MDS. Given the dissimilarity matrix ∆2
l is

computed as follows:

Bl = −1

2
HT
l ∆2

lHl (4)

whereHl is the mean-centering matrix. Then, them largest positive eigenvalues ofBl with
their eigenvectors are computed,Bl = V ΛV T . Lastly, the coordinates of l landmark points
in the m-dimensional Euclidean space are given by

Yl = Λ1/2V T ∈ Rm (5)

Step 3. Based on the embedded landmark points in Rm, the next step is to obtain
embedding coordinates of the remaining data points based on their distances from the
landmark points. Given a point x, the embedding ~yx is computed as:

~yx =
1

2
Y #
l (~δx − ~δµ) (6)

where ~δx is a vector of squared distances between the point x and the l number of landmark
points and Y #

l is pseudo-inverse transpose of Yl. ~δµ (= ~δ1 + ~δ2 + · · ·+ ~δl)/l) is the mean
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of ~δis which are the vectors of squared distances from the i-th landmark to all the landmark
points.

Step 4. The PCA step is not an optional step that, normalizes the embedding coordinates.
Note that the computational complexity of LMDS is O(nlk + l3) which is much more

efficient than the classical MDS.

Algorithm 2: LMDS-based binding-site search
Data: A query protein q, and a dissimilarity matrix D
Result: Top-k result Xk

1 Xk = φ
2 Select l landmark points, L
3 Apply classical MDS and obtain the embedding coordinates of landmark points, Yl
4 Compute embedding coordinates of the remaining points, Y
5 Compute an embedding coordinate of the query point, yq
6 Xk = GetTopK(k, yq, Yl[:])
7 return Xk

3.3 LMDS-based binding-site search

Based on Patch-Surfer, we suggest an efficient binding-site search algorithm, called LMDS-
based binding-site search, by exploiting LMDS. Given a query protein, q, our algorithm first
proceeds LMDS to obtain embedding coordinations of landmark points and other remaining
points, Y = {y1, y2, · · · , yn}. To select landmark points (Line 1), we take two different
approaches. After which, the embedding coordinates of q is computed as Eqn. 6. Using
an embedding coordinate of the query, we can find top-k similar proteins by computing
the Euclidean distance from all candidate points in database (GetTopK() at Line 5). The
detailed algorithm is presented in Algorithm 2.

Although this approach still visits every data point (or it cannot reduce the evaluation
ratio), the computation of the Euclidean distance between the embedding coordinates is
much more efficient than computing similarity between pockets using the Patch-Surfer
alone. Figure 4 is the processing time of Patch-Surfer and LMDS-based binding-site search
where k is 25, the number of landmark points is 10, and 100 target queries are randomly
selected.

According to the result, the LMDS-based binding-site search reduces the processing
time for top-k retrieval. However, accuracy depends on the number of landmark points as
well as representativity of the selected landmark points. The accuracy of a query differs
when different landmark points are selected as well as when the landmark points are fixed
and queries differed (Figure 5).

3.4 LMDS-based binding-site search+

Unfortunately LMDS-based binding-site search did not have high agreement with the
original Patch-Surfer in the top-k proteins retrieved. To enhance the accuracy of LMDS-
based binding-site search, we add one more step to the previous algorithm. In algorithm 3, k′

nearest neighbors are retrieved where k′ > k (Line. 6), and among them k nearest neighbors
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Figure 4 Comparison of Patch-Surfer and LMDS-based binding-site search in the processing time
(sec.); x-axis is queries and y-axis is the processing time

Figure 5 Accuracy of Patch-Surfer; x-axis is queries and y-axis is the number of proteins which
are accurately where k is 50

Algorithm 3: LMDS-based binding-site search+
Data: A query protein q, a raw data X , and a dissimilarity matrix D
Result: Top-k result Xk

1 Xk = φ
2 Select l landmark points, L
3 Apply classical MDS and obtain the embedding coordinates of landmark points, Yl
4 Compute the embedding coordinates of the remaining points, Y
5 Compute the embedding coordinates of the query point, yq
6 X ′k = GetTopK(k′, yq, Yl[:])
7 Xk = GetTopK(k, q,X[X ′k])
8 return Xk

are retrieved by computing the original Patch-Surfer distances from query point to candidate
nearest neighbors (Line. 7). It retrieves more accurate result than LMDS-based binding-site
search does. However, the processing time is increasing since it has to compute the original
Patch-Surfer distances. For efficient use of the second method, we have to find sufficient
but small k′ number for each k of interest.
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4 Results

In this section, we provide experimental results for verifying the effectiveness of our methods
on top-k search of ligand binding sites. Sael and Kihara (Sael & Kihara, 2012b,a) showed
that Patch-Surfer can identify correct pockets even in the absence of known homologous
structures in the database. Therefore, we evaluate our algorithm in terms of the efficiency
considering the top-k result of the Patch-Surfer as golden standard. The experiments were
conducted on the machine, Intel Core(TM) i7 CPU (3.40GHz), and 16 GB memory.

4.1 Dataset

For experiment, we used the same dataset as (Sael & Kihara, 2012a) where it contains 9393
representative pockets with 2707 different ligand types extracted from the Protein Data
Bank (PDB). According to the previous work (Sael & Kihara, 2012a), ligand binding-site
is represented as the 3DZDs of four features. In this section, we will briefly describe data
format. Each data instance consists of six lines as follows:

• 1. The number of patches in the protein, and the dimensions of four 3DZDs

• 2. The weight of four 3DZDs based on their mean and standard deviations. They are
used for computing distance and weighted sum for the final score.

• 3. The 3DZD of shape information (or typical 3DZD representation)

• 4. The 3DZD of hydrophobicity

• 5. The 3DZD of electrostatic potential

• 6. The 3DZD of visibility

4.2 Performance dependency on the number of landmark points

In this section, we inspect how the accuracy of LMDS-based binding-site search changes
when the number of landmark points, l, is increased. Since our method is an approximation
method, the accuracy is measured by how many pockets in the top-k results are retrieved
consistently with the Patch-Surfer. More specifically, the accuracy is computed as follows:

Accuracy =
|X̂k ∩Xk|
|Xk|

(7)

where X̂k is a set of top-k nearest neighbors retrieved by LMDS-based binding-site search
and Xk is a set of true top-k nearest neighbors. According to the result (Fig. 6), our
method retrieves more accurate k nearest neighbors with more landmark points, since we
can preserve the distance relationship of data points better with more landmark points.
Fig. 7 shows the result of speedup ratio between Patch-Surfer and LMDS-based binding-site
search. The speedup ratio is computed as follows:

Speedup ratio =
|tps − tlmds|
|tps|

(8)
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where tlmds is the processing time of LMDS-based binding-site search and tps is the
processing time of Patch-Surfer. Intuitively, the speedup ratio of LMDS-based binding-site
search decreases as the number of landmark points increases. This is due to the cost of
computing Eigen value decomposition and embedding coordinates which both rely on the
number of landmark points. However, LMDS-based binding-site search still retrieves faster
than the Patch-Surfer (the speedup ratio always more than 95%).

Also, two landmark selection approaches are comparable in performance. When the
number of landmark points is 10, however, random selection works better than greedy
selection (Figure 6). Examination of greedy selection shows that when the number of
landmark points is small, it tends to select from a small region on the input space. When
a new query point is introduced, due to this bias in the landmark point distribution, it is
likely that the similarity of query point to all other points have slight differences. However,
if we select enough number of landmark points, both the landmark selection approaches
are widely dispersed and small differences between positions are sufficiently preserved.

Figure 6 Accuracy of LMDS-based binding-site search; x-axis is the number of landmark points,
l, and y-axis is the accuracy where k is 50

Generally, for landmark point selection, greedy selection takes 8.87 seconds on average
with standard deviation of 0.98. However, since the landmark selection can be done offline,
it does not affect actual the search speed. We do not present the result of speedup ratio
of greedy selection since there is no reason to believe it would be different from random
selection as in Fig. 7.

4.3 Performance dependency on the number of nearest neighbors

In this section, we observe how the performance are changed dependent on the number of
retrieved pockets, k, when the number of landmark points is fixed to 50 (Fig. 8). In most
cases, the result of greedy selection has higher accuracies than that of the random selection.
It is also interesting to note that the difference between the accuracy of two landmark
selection approaches is small when k is large. For example, the difference between k of 50
and 100 is ignorable (both of them are close to 80%). The result of the processing time is
not presented since most of the cost depends on Eigen value decomposition of the distance
matrix of landmark points so that it does not vary as k differs.
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Figure 7 Speedup ratio of LMDS-based binding-site search (Random selection); x-axis is the
number of landmark points, l and y-axis is the speedup ratio where k is 50

Figure 8 Accuracy of LMDS-based binding-site search with 50 landmark points; x-axis is the
number of result, k and y-axis is the accuracy

4.4 Performance of LMDS-based binding-site search+

This section provides the experimental result that shows enhancement of LMDS-based
binding-site search+. Previously, LMDS-based binding-site search retrieves only 80% of
true top-k nearest neighbors. In this experiment, k is 10 and k′ varies from 10 to 50. When
k′ is 10, the process is same as that of LMDS-based binding-site search. According to the
result (Fig. 9), if we set k′ to more than k × 3, the result contains more than 90% of exact
top-k nearest neighbors. As more nearest neighbors are retrieved, the accuracy becomes
even better (about 95%). However, the speedup ratio decreases linearly (Fig. 10), since we
have to compute the original Patch-Surfer distances between k′ nearest neighbors to find
exact top-k nearest neighbors. It shows that there is a tradeoff between the accuracy and the
speedup ratio. To summarize, when k is 10 and k′ is 30, LMDS-based binding-site search+
retrieves 95% of true top-10 result with 90% speedup ratio compared to the Patch-Surfer.

5 Conclusion

In this work, we proposed a new local binding site search system, called LMDS-based
binding-site search. We exploit Landmark Multi-Dimensional Scaling (LMDS), which is an
efficient version of MDS being popularly used for representing high-dimensional dataset.
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Figure 9 Accuracy of LMDS-based binding-site search with k′; x-axis is k′ and y-axis is the
accuracy where k is 10, l is 50

Figure 10 speedup ratio of LMDS-based binding-site search with k′; x-axis is k′ and y-axis is the
speedup ratio where k is 10, l is 50

We take two approaches for the selection of landmark points: 1) random selection and 2)
greedy selection. According to the result, LMDS-based binding-site search approximately
retrieves top-k nearest neighbors and its accuracy increases as we exploit more landmark
points. Although two landmark selection approaches show comparable result, greedy
selection shows the best result when the number of landmark points is sufficiently large.
Specifically, using LMDS-based binding-site search with random or greedy selection, it
retrieves almost 80% of true k nearest neighbors with upto 99% of the speedup ratio.
LMDS-based binding-site search+ retrieves k′ nearest neighbors (k′ > k) with the LMDS-
based binding-site search and finds k nearest neighbors using the original Patch-Surfer
distances between thek′ pockets and the query. It enhances the accuracy upto 95%. However,
retrieving more neighbors and computing actual distances between them hurts the efficiency.
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