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Abstract

In this supplementary material, we suggest full proof of the row-wise update rule for factor matrices and
theoretical complexities of P-TUCKER-APPROX, which were introduced in the main paper.

I. FULL PROOF OF THE ROW-WISE UPDATE RULE

Definition 1 (Sparse Tucker Factorization): Given a tensor X (∈ RI1×...×IN ) with observable entries Ω,
the goal of sparse Tucker factorization of X is to find factor matrices A(n) (∈ RIn×Jn) and a core tensor
G (∈ RJ1×...×JN ), which minimize Equation (1).

L(G,A(1), ...,A(N)) =
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∀(i1,...,iN )∈Ω
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Theorem 1 (Row-wise Update rule for Factor Matrices):
arg min

[a
(n)
in1,...,a

(n)
inJn

]
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+ λIJn ]−1 (2)

where the (j1, j2)th entry of B
(n)
in
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Proof:
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∑
∀(i1,...,iN )∈Ω
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)
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(
δ
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))
is expressed as an inner product of the following vectors.

Row vector (1× Jn) : [a
(n)
in1, ..., a

(n)
inJn

]

Column vector (Jn × 1) :


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

If we vary jn from 1 to Jn, the row vector is fixed as a(n)
in: and the column vector differs.

Thus, we can integrate each column vector into a matrix B
(n)
in

(∈ RJn×Jn)

where the (j1, j2)th entry of B
(n)
in

(∈ RJn×Jn) :
∑

∀(i1,...,iN )∈Ω
(n)
in

δ
(n)
(i1,...,iN )(j1)δ

(n)
(i1,...,iN )(j2).

λ term is simply transformed into λIJn , where IJn is an identity matrix (∈ RJn×Jn).
In the same way, the right part of Equation (6) is integrated as c

(n)
in: (∈ RJn)

where the jth entry of c
(n)
in: (∈ RJn) :

∑
∀(i1,...,iN )∈Ω

(n)
in

X(i1,...,iN )δ
(n)
(i1,...,iN )(j).

Therefore, Equation (6) is equivalent to
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+ λIJn ] = c
(n)
in:

Since B
(n)
in

is represented as the sum of rank-1 matrices and λ > 0, matrix [B
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in

+λIJn ] is positive-definite
and invertible. Hence,
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Algorithm 1: P-TUCKER for Sparse Tensors
Input : Tensor X ∈ RI1×I2×···×IN ,

core tensor dimensionality J1, ..., JN , and
truncation rate p (P-TUCKER-APPROX only).

Output: Updated factor matrices A(n) ∈ RIn×Jn(n = 1, ..., N),
and updated core tensor G ∈ RJ1×J2×···×JN .

1 initialize factor matrices A(n) (n = 1, ..., N) and core tensor G
2 repeat
3 update factor matrices A(n) (n = 1, ..., N)
4 calculate reconstruction error
5 if P-TUCKER-APPROX then . G Truncation
6 remove “noisy” entries of G by Algorithm 2

7 until the maximum iteration or ‖X−X′‖ converges;
8 for n = 1...N do
9 A(n) → Q(n)R(n) . QR decomposition

10 A(n) ← Q(n) . Orthogonalize A(n)

11 G← G×n R(n) . Update core tensor G

Algorithm 2: P-TUCKER-APPROX

Input : Tensor X ∈ RI1×I2×···×IN ,
factor matrices A(n) ∈ RIn×Jn(n = 1, ..., N),
core tensor G ∈ RJ1×J2×···×JN , and
truncation rate p (0 < p < 1).

Output: Truncated core tensor G′ ∈ RJ1×J2×···×JN .
1 for β = ∀(j1, ..., jN ) ∈ G do
2 compute a partial reconstruction error R(β)

3 sort R(β) in a descending order with their indices
4 remove p|G| entries in G, whose R(β) value are ranked within top-p|G| among all R(β) values.

II. THEORETICAL COMPLEXITIES OF P-TUCKER-APPROX

Theorem 2 (Time complexity of P-TUCKER-APPROX): The time complexity of P-TUCKER-APPROX
is O(NIJ3 +N2|Ω||G|).

Proof: The only difference between P-TUCKER and P-TUCKER-APPROX is that P-TUCKER-APPROX
exploits |G| entries rather than using full JN entries of G. Thus, the time complexity of P-TUCKER-
APPROX for updating factor matrices and computing the reconstruction error is reduced to O(NIJ3 +
N2|Ω||G|). Moreover, the cost of Algorithm 2 is O(N |Ω||G|), which is much less than that of other parts.
Hence, the time complexity of P-TUCKER-APPROX is O(NIJ3 +N2|Ω||G|).

Theorem 3 (Memory complexity of P-TUCKER-APPROX): The memory complexity of P-TUCKER-APPROX
is O(JN).

Proof: Compared to P-TUCKER, P-TUCKER-APPROX requires additional intermediate data to store
R(β). The memory complexity of R(β) is at most O(JN), and the memory requirements for R(β) is
much larger than other intermediate data. Therefore, the memory complexity of P-TUCKER-APPROX is
O(JN).
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