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Abstract

In this supplementary material, we suggest full proof of the row-wise update rule for factor matrices and
theoretical complexities of P-TUCKER-APPROX, which were introduced in the main paper.

I. FULL PROOF OF THE ROW-WISE UPDATE RULE

Definition 1 (Sparse Tucker Factorization): Given a tensor X (€ R/1*-*Iv) with observable entries (2,
the goal of sparse Tucker factorization of X is to find factor matrices A™ (& R»*’») and a core tensor
G (e R/**+*J~) which minimize Equation (T)).
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Theorem 1 (Row-wise Update rule for Factor Matrices):
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If we vary j, from 1 to J,, the row vector is fixed as a
Thus, we can integrate each column vector into a matrix BE:)(E RnxJn)

where the (ji, jo)th entry of BE:)(E R7n*In) . Z 5 (j1)5(n) (J2)-
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A term is simply transformed into AI;,, where I, is an identity matrix (€ R7»*/»),
In the same way, the right part of Equation () is integrated as cgf) (e R7)
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Therefore, Equation (6) is equivalent to
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Since B!™ is represented as the sum of rank-1 matrices and A > 0, matrix [ngj) + A1, ] is positive-definite
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and invertible. Hence,
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Algorithm 1: P-TUCKER for Sparse Tensors

Input : Tensor X € RIvxfax-xIn,
core tensor dimensionality Jy, ..., Jy, and
truncation rate p (P-TUCKER-APPROX only).
Output: Updated factor matrices A € RI»*Jn(n =1,...,N),
and updated core tensor G € Rt X J2x XN
1 initialize factor matrices A™ (n =1,..., N) and core tensor G

2 repeat

3 update factor matrices A (n=1,...,N)

4 calculate reconstruction error

5 if P-TUCKER-APPROX then > § Truncation
6 L remove “noisy” entries of G by Algorithm

~

until the maximum iteration or | X — X'|| converges;
for n = 1..N do

=)

9 A 5 QMRM > QR decomposition
10 A Q™ > Orthogonalize A(™
| G+ G x, R™ > Update core tensor §

Algorithm 2: P-TUCKER-APPROX

Input : Tensor X € RIxxT2xxIn,
factor matrices A(™) € RI"*/n(n =1,..., N),
core tensor G € R/1*xJ2x-XJNn apd
truncation rate p (0 < p < 1).
Output: Truncated core tensor G/ € R/t x/2xxJn
1 for 8 =VY(j1,....,jn) € G do
2 L compute a partial reconstruction error R(3)

3 sort R(B) in a descending order with their indices
4 remove p|G| entries in G, whose R(3) value are ranked within top-p|G| among all R(3) values.

II. THEORETICAL COMPLEXITIES OF P-TUCKER-APPROX

Theorem 2 (Time complexity of P-TUCKER-APPROX): The time complexity of P-TUCKER-APPROX
is O(NI.J? + N?|Q||G]).

Proof: The only difference between P-TUCKER and P-TUCKER-APPROX is that P-TUCKER-APPROX
exploits |G| entries rather than using full J? entries of G. Thus, the time complexity of P-TUCKER-
APPROX for updating factor matrices and computing the reconstruction error is reduced to O(NI1.J3 +
N2|Q||SG|). Moreover, the cost of Algorithm 2]is O(N|Q||G|), which is much less than that of other parts.

Hence, the time complexity of P-TUCKER-APPROX is O(NIJ? + N?|Q[|G|). u
Theorem 3 (Memory complexity of P-TUCKER-APPROX): The memory complexity of P-TUCKER-APPROX
is O(JV).

Proof: Compared to P-TUCKER, P-TUCKER-APPROX requires additional intermediate data to store
R(/3). The memory complexity of R(3) is at most O(JV), and the memory requirements for R(f3) is
much larger than other intermediate data. Therefore, the memory complexity of P-TUCKER-APPROX is
O(JN). |
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