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Abstract—In the big data era, data are not only generated
in massive quantity but also in diversity. The heterogeneous
characteristics of the diverse data sources on a subject provide
complimentary information. However, they pose challenges in
data analysis process. Then, what are the existing methods for
utilizing theses heterogeneous data to improve data analysis
and how can we choose amongst these methods? We categorize
integrative methods for heterogeneous data analysis to Bayesian
network based methods and multiple kernel based methods and
describe them in detail with examples of successful applications
in the bioinformatics field.

I. INTRODUCTION

In the big data era, we are not only faced with the
massiveness of data but also with heterogeneity of the data
that often provide complementary views about a subject. We
can expect that having more information about a subject,
we have better chance of analyzing it with higher accuracy.
However, analysis of these data are often challenging due
to inconsistencies in the data that results from diversity in
data extraction environment and perspectives. This emerges
the need for integrative analysis methods that are able to
analyze heterogeneous data, i.e., methods that are able to
combines data with diverse background distributions, relations,
dimensions, and formats to enhance the statistical significance
and obtain more refined information.

The heterogeneity may result due to various reasons. It may
be due to difference in data extraction environment and what
perspective of the subject is being studied. Difference in the
data extraction environment includes difference in the data
sources, and the extraction methods. Data source depends on
the research question being addressed. In case of biological
experiments, a source can be a model organism or a cell line
used to carry out the experiment. There is also diversity in
the data extraction methods and they often result in different
background distributions. The perspective of the study being
performed on the subject also contributes to the heterogeneity
in various aspects including what is being measured, type of
experiment performed, and resolution of the data.

Considering data formats, there are heterogeneity in mea-
surement scales, dimensions, and types. There is wide spec-

trum of data formats used to represent data ranging from
high-resolution images, structured, multi-dimensional data to
networks, vector, etc. Different formats require different data
types (numeric, character, textual, and etc.) to store the data.
They are also associated with measurement scale of data:
nominal, ordinal, interval and ratio.

The heterogeneous data integration methods are being ex-
plored in numerous fields of study. Some of the success-
ful application includes integrative methods used for gene
prioritization [1], bacteria classification and gene function
prediction [2], siRNA efficacy prediction [3], signal processing
applications [4], visual object recognition[5], protein function
prediction [6], and inference of patient-specific pathway activ-
ities [7].

There are many applications that attempt to integrate hetero-
geneous many of which are heuristic approaches that depend
heavily on the specific problem being targeted. Although
some methods are difficult to be generalized, we find that
there are two major class of methods that are explored for
heterogeneous data analysis: Bayesian network based methods
and multiple kernel based methods.

II. NETWORK BASED METHODS

A. Bayesian Networks
Bayesian networks (BN) are one of the parametric learning

methods that the data are assumed to be drawn from a
probability distribution of specific parameter values. More
formally, BN is a directed acyclic graph G that represents the
joint probability distribution over the set of random variables
X1,X2,. . . ,Xn where the nodes represents the variable and
edges represents the conditional dependencies between the
variables. The graph structure of BN is capable of representing
a joint probability distribution of a domain as

Pr(X1, X2, . . . , Xn) =

n∏
i=1

Pr(Xi|Pai) (1)

where Pai denotes the parents of Xi. Thus, the joint probability
distribution can be factored into smaller local probability
distribution each involving a node and its parents.
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Fig. 1. Example of naive bayes model for integrating data sources.

BNs are often used to represent complex relationships
among variables for several reasons. First of all, they can
handle uncertainty in knowledge explicitly. In addition, BN’s
graphical representation provides an intuitive method for inte-
grating existing knowledge about the variables. The graphical
structure of BN enforces certain dependency constraints as
shown in Fig. 1.

BNs are also ideal for integrative analysis of heteroge-
neous data as they not only provide the means to model
relations between variables, they can also be extended to
model relations between heterogeneous data of each variable.
A simplest application of BN of integrating several types
of data or observations would be to assume independence
between observations (xs in Fig. 1) and use naive Bayes
model to determine the set of data infers a hidden factor (y in
Fig 1) [6]. More complex application of BN will model the
relationship between observations [7].

In modeling BN for heterogeneous data integration, two
components are considered:

• network structure in a form of directed acyclic graph
(DAG) that represents relationship between different ob-
servations (heterogeneous data) of variables that describe
the subjet and relationship between the variables them-
selves, and

• set of the local probability distributions one for each
variable and its observed characters, conditioned on each
value combination of the parents.

Applications of the BN on heterogeneous data integration
follow the same steps of the regular BN analysis. First step
is construction of BN structure. There are three approaches to
obtain the structure of BN: 1) manual construction based on
expert knowledge, 2) structure learning using the massive data,
and 3) mixture of the two approaches. After construction of
BN structure, parameters associated with the conditional prob-
abilities can be learned by maximum likelihood approaches.
When a new data is processed, various inference algorithms in-
cluding sampling methods and belief propagation approaches
can make inference about a variable in the BN.

B. Applications of Bayesian Networks on Heterogeneous Data
Integration

Bayesian network (BN) provides a flexible framework for
integration heterogeneous data and researches of various fla-
vors have been performed. We look at some of examples of
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Fig. 2. Example Bayesian network framework for heterogeneous data
integration.

how BN can be applied in the heterogeneous data integration
by looking at example applications.

1) Example that learn both structure and parameter of BN:
Gevaert et al. [8] presented a BN framework to prognosis
breast cancer by integrating clinical and microarray data with
BN. They proposed and evaluated three different integration
methods, namely full integration, partial integration and deci-
sion integrations based on the time point of the integration.
In the full integration, integration occurs in the initial stage
where the two data types (clinical and microarray data) are
merged and processed as one dataset. In the partial integration,
BN structures for each data type are learned first and then
integrated to form one structure. The parameter learning is
done on the integrated structure. In the decision integration, the
predictions of learned models for each data types are integrated
after individual data. Out of the three methods used to test the
prediction accuracy, partial and decision integration was shown
to performs better on heterogeneous data as compared to full
integration method and individual data evaluations.

In their work, learning process of BN model was developed
in two steps: structural learning and parameter learning [8].
The structure of the BN was learned using K2 [9], a greedy
search algorithm, based on Bayesian Dirichlet (BD) scoring
metric [10]. The BD scoring metric is shown in the following
equation:

p(S|D) ∝

p(S)
n∏

i=1

qi∏
j=1

[
Γ(N

′

ij)

Γ(N
′
ij +Nij)

ri∏
k=1

Γ(N
′

ijk +Nijk)

Γ(N
′
ijk)

]
(2)

where S denotes the current structure, Nijk are the number
of cases in the dataset D (containing n variables) having
variable i in the state k with the jth instantiation of its parents.
The ri is the number of state of variable i and being qi the
number of instantiation of the parent of variable i. N

′

ij refers
to prior knowledge of parameter and Nij is computed as given
by Eq. 3 and in cases no prior knowledge is available, it is
computed using Eq. 4. Γ (.) denotes the gamma distribution
and represents prior structure probability. The K2 search
strategy use eq. 2 to score the structure.

Nij =

ri∑
k=1

Nijk.N
′

ijk. (3)

N
′

ijk = N/(riqi). (4)
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After generation of BNs for each data types, parameters of
conditional probability table (CPT) based on uniform Dirichlet
prior is learned. The uniform Dirichlet prior is formulated as
follows:

p(Θij |S) = Dir(Θij |N
′

ij1, · · · , N
′

ijk, · · · , N
′

ijri , S) (5)

where Θij corresponds to parameter set, where it contains
the probability for every value of the variable Xi given the
current instantiation of the parent. The parameter for Dirichlet
are chosen un-informatively and are updated with the data that
results in Dirichlet posterior over the parameter set denoted by
Eq. 6. The CPT for each variable is computed by Maximum
A Posteriori (MAP) parameterization of the Dirichlet distribu-
tion.

p(Θij |D,S) = Dir(Θij |N
′

ij1 +Nij1, · · · , N
′

ijk +Nijk,

· · · , N
′

ijri +Nijri , S).
(6)

2) Exmaple of modeling data source relationship with BN:
Troyanskaya et al. [11] introduced a framework for integrating
multiple data types and microarray analysis methods called
the MAGIC (Multisource Association of Genes by Integration
of Clusters). The main component of MAGIC is a BN that
describes the relationship between possible data types and their
grouping. For example, “two-hybrid” data and “reconstructed
complex” data, both of which infers physical contact between
bio-molecules of interest, is linked to a group called “physical
association”. The BN structure and the prior probabilities
that describe the relationship between multiple data types and
microarray analysis methods is constructed based on expert
knowledge. Given set of evidences (data types), the BN is used
to compute the posterior probability about whether a pair of
genes has a functional relationship.

3) Examples using BN to varify pair-wise variable relation
with multiple data source: Jensen et al. [12] discussed the data
integration of gene expression data, ChIP binding data, and
promoter sequence data to infer whether there is a relationship
between pairs consisting of a gene and a transcription factor
(TF) in order to construct a biological regulatory network.
The BN is used to model relationship between at two to three
variables (a gene and one or two TFs) and between the three
data types. A single posterior distribution for all unknown
parameters are summarized in the following:

p(C,w,Θ|g, f,m, b) ∝
p(g|f, C,Θ).p(C|m, b, w).p(Θ, w)

(7)

where Θ is a collection of linear model parameters, p(g|f,C,Θ)
stands for first level with gene expression as a linear function
of TF expression and p(C|m,b,w) is second level with chip
binding data and promoter sequence data and p(Θ,w) is the
prior distribution for TF-specific prior weight.

Xing et al. [13] applied BNs for genomic data integration
to reduce the misclassification rate in Protein-Protein Inter-
action (PPI). They proposed a method called nonparametric
Bayes ensemble learning (NBEL), which is a nonparametric
approach that dynamic integration data type by automatically
up-weighting informative data source and down-weighting less

informative and biased sources. Pairs of proteins are evaluated
on the different data sources to determine whether there is
as relationship between them. The pairwise relations are then
used to construct the PPI network. The posterior probability
of an interaction in pair of proteins i on data Y and the
distribution f is formulated as follows:

Pr(zi = 1|Y, f) =

Ψi

p∏
j=1

f1j(yij

Ψi

p∏
j=1

fij(yij) + (1−Ψi)
p∏

j=1

f0j(yij)

(8)

where Ψi is prior probability of interaction in pair i, the value
for Ψi can defer for uninformative data source. f0j is the
unknown distribution of the jth score across protein pairs
that do not interact, and f1j is the unknown distribution of
the jth score across protein pairs that do interact. Y denote an
data matrix, with rows corresponding to different protein pairs
and columns to different types of scores from different data
sources, yi1,· · · ,yip .

The models developed to address different problems took
advantage of strong mathematical basis of BN formulation,
its natural capability to handle uncertainty and robustness in
handling small changes in the model. BN provides a suitable
framework for combining highly heterogeneous experimental
data with expert knowledge. Moreover, the model developed
is relatively easy to interpret and understand. However, major
challenges for these BNs are the scalability issues and how
to better model the prior probability distributions of random
variables.

III. MULTIPLE KERNEL BASED METHODS

A. Kernels

Kernel based methods are nonparametric learning methods
that utilize kernel functions [14] to define implicit similarity
between the pair of samples in the data according to vari-
ables that describe the data. There are several advantages of
kernel based methods. One of the advantages is that no prior
assumptions about the distribution of the data are needed due
to nonparametric characteristic of kernels. In addition, kernel
functions can be used to model non-linear relationship between
variables. Furthermore, the size of kernels are dependent only
on the sample sizes and not on the number of variable or
features, which makes it ideal for high dimensional data where
the number of features are large.

The three most common kernel functions used are lin-
ear (kLin; Eq.9 ), polynomial (kPoly; Eq.10) and Gaussian
(kGauss; Eq.11). Considering two data point xi and xj the
three kernel functions are formulated as follows:

kLin(xi, xj) =< xi.xj >, (9)

kPoly(xi, xj) = (< xi.xj > +1)q, (10)

and
kGauss(xi, xj) = exp(−||xi − xj ||22/s2),

s ∈ R++.
(11)
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B. Multiple Kernel Learning

Multiple kernel (MK) learning methods are set of methods
that utilize combinations of kernels in the machine learning
process. First part of MK learning is kernel fusion where
multiple kernels are combined to form one kernel matrix. MKs
can be created using a single data type with varying kernel
functions and parameters which are then combined (kernel
fusion) to achieve better learning results [15]. For the purpose
of integrative analysis of heterogeneous data, kernel can be
created for each data types and combined to be used with
various kernel based learning methods.

There are two major advantages of MK methods compared
to BNs in integrative analysis. First, they are often easier
to modeling with no prior variable relations need to be
modeled or learned. Second, in MK methods, data types need
not be normalization prior to integration. That is, each raw
representation of data types with varying scale, dimension,
and distribution is transformed to a feature space.

Second part of MK learning is performing various kernel
base learning methods, such as kernel perceptron, support
vector machines (SVM), support vector regression, and ker-
nel principal components analysis. Among the kernel based
learning methods, SVM is the most widely used learning
method for classification. SVM maximizes the marginal dis-
tance in the feature space using the discriminant function
f(x) = (w.φ(x)) + b. This results in a quadratic optimization
problem

min
1

2
||w||2 + C

N∑
t=1

ξt (12)

with respect to w ∈ Rs, ξ ∈ RN
+ , b ∈ R subject to

yt(< w,Θ(xt) > +b) ≥ 1− ξt (13)

where b is the bias term, w is the vector of weight coefficients,
C is a predefined positive trade-off parameter between model
simplicity and classification error, ξ is the vector of slack
variables.

The optimization problem is solved using Lagrangian dual
function. Thus the discriminant function can be rewritten as
the following equation:

f(x) =

N∑
t=1

αtytk(xt, x) + b (14)

where k(xt,x) denotes the kernel function.
In addition to classification, MK learning also relates to

other learning tasks other then classification such as feature
selection and distance metric learning [15]. In feature selec-
tion, multiple kernels are used for learning from heterogeneous
data sources and nonlinear variable selection. A study reported
for group Lasso [16], in which features are well ordered
into groups, and selection is conducted at group level. In
order to address issues like quadratic growth of the kernel
matrix with respect to the data, an ensemble of the kernel was
proposed [17] inspired by the ensemble and boosting methods.
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Fig. 3. Multiple kernel learning framework.

In distance metric learning [18], MK is used to as the metrics
to find similarity between inter class instances.

Fig. 3 represents the overall framework of multiple kernel
learning approaches.

Gonen and Alpaydin [15] presented an in depth survey
of MK learning methods focusing on kernel fusion meth-
ods categorized according to type of combination, functions
optimized, and optimization approached used. According to
their description, the basis of MK learning is an extension of
the dual problem, which depends on the kernel description,
whereas the heterogeneity deals with handling and converting
data from different data structure into kernel matrices. The
objective of the dual problem is to combine these kernel
matrices such that the kernel coefficients optimize the overall
objective, also known as kernel fusion.

Kernel fusion is an integrative part of MK learning frame-
work. It facilitates the learning of an appropriate kernel to
form an optimal kernel matrix. Kernel matrixes generated
from individual data types can be combined linearly, non-
linearly, or data-dependently to maximize similarity between
kernels, minimize the sum of regularization and error terms, or
maximize the likelihood estimate using fixed rule, heuristics,
optimizations, Bayesian, or boosting methods [15], [19], [20]
in forming a fused kernel matrix.

Parameters in the MK learning can be learned in two stages
or in one stage [15]. In the two-stage process, parameters
associated with the kernel fusion are optimized and then they
are used to learn the parameters of the base learners. In the
one stage process, parameters of the kernel fusion and the base
learner are optimized simultaneously.

The overall performance of MK learning depends on many
factors, including number of kernels selected, training time,
efficiency in terms of solution quality, base learner, and data
set size as well as the choice of the kernel fusion method. The
reported methods in the literature usually consider one or few
factors for comparison and analyze the algorithm behavior.

C. Applications of Multiple Kernel Based Methods

Gene prioritization aims at identifying the significant
causative gene in disease analysis. The main objective is to
assign ranks among the gene based on their relevance to
the biological process and select causative genes amongst
the highest ranked genes. Recently in gene prioritization,
multiple data sources such as gene expression, methylation,
and mutation data, are integrative analysis to identify candidate
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genes most likely to be associated with or causative of a
disorder. De Bie et al. [1] and Mordelet & Vert (ProDiGe)
[21] used linear and weighted linear combination of kernels
from multiple data sources to prioritize genes. They observed
that kernel methods are accurate and robust against noise.

Multiple kernel learning constituted a powerful methodol-
ogy as it allows integrating multiple data sets that extract non-
linear features while representing variables. These models are
more scalable and provide computational stability. However,
compared to BNs base methods, theoretical results of such
models are typically harder to prove.

IV. CONCLUSION

In this study, we have considered two different classes of
integration analysis methods for heterogeneous data: Bayesian
network (BN) based methods and multiple kernel (MK) based
methods. Both methods provide an efficient means for inte-
grating the data of different views of a subject. BN and MK
can be selected based on the characteristics of the variables
and data types of the problem. BNs are efficient when BN
structures, i.e. relationship among variables and among the
data views, can be model accurately. This is especially useful
when existing knowledge about the variables and data types
needs to be incorporated. On the contrary, MK is a better
choice when knowledge about the variable relations is not
explicitly known since normalization of each of the data
types and prior assumption about the data distribution is not
needed in MK modeling. Another advantage of BN includes
easiness of providing theoretical proofs while it is difficult
to theoretically prove the correctness of MK methods in
prediction. However, BN requires both data normalization and
knowledge of prior distribution, which can affect the result
significantly if done incorrectly.
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