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Matrix Factorization Based Mining
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PART 2.1:

DEEP NEURAL NETWORK AND BIO-BIG DATA
- NN BASICS & TYPES OF DNN

- BIO-BIG DATA APPLICATIONS



ARTIFICIAL NEURAL NETWORKS

Neural networks

Perceptrons

Multilayer perceptrons
Applications of neural networks

Part 2.1.1 Slides are mostly made from AIMA resources and
Andrew W. Moore’s tutorials: http://www.cs.cmu.edu/~awm/tutorials



EXAMPLE APPLICATIONS

ANN is robust to error in the training data and has

been successfully applied to various real problems
Speech/voice recognition

-ace recognition

Handwriting recognitions

t can also be used where symbolic representations are
used as cases for Decision tree learning




CHARACTERISTICS OF ANN

Instances are represented by many attribute-value pair (supervised)
The target function output may be discrete, real, or vector

Training data may contain error

Long training times are acceptable

Fast evaluation of the learning target function may be required

The ability of humans to understand the learned target function is not
Important.



PRIMITIVE UNITS THAT MAKE UP ANN

Perceptron

@ Activation
Fundamental unit of a Neural Network/ function
N
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Learning a perceptron involves
choosing values for the weights wi
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Inputs

Other Units:
Linear units
Sigmoid units
Rectified linear units



ANN STRUCTURE: CONNECTING UNITS

Feed-forward networks: connections only in one direction (directed
acyclic graph)
Feed-forward network implement functions, have no internal state

Examples:
single-layer perceptrons (outputis 0 or 1)
multi-layer perceptrons
Convolution neural network

Recurrent networks:

Have directed cycles (feedback loops) with delays = have internal state (like
flip-flops), can oscillate etc.

Interesting models of the brain but more difficult to understand.



FEED-FORWARD EXAMPLE

Feed-forward network = a parameterized family of nonlinear functions:

as = g(Was-as+ Wys - ay)
= g(Ws5-9g(Wisg-a1+Wog-ag) + Wys-g(Wig-a1+Woy-ay))

Adjusting weights changes the function: do learning this way!



SINGLE LAYER FEED-FORWARD NEURAL
NETWORKS: PERCEPTRON NETWORK

Every unit connects directly form the network’s inputs to it's output

3 separate
learning tasks
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Output units all operate separately — no shared weights

Adjusting weights moves the location, orientation, and steepness of
cliff.



EXPRESSIVENESS OF SINGLE LAYER

PERCEPTRONS

« Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)

« Can represent AND, OR, NOT, majority, etc., but not XOR

 Represents a linear separator in input space:

EX> Two bit adder

Two separate component
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PERCEPTRON LEARNING

Learn by adjusting weights to reduce error on training set
The squared error for an example with input x and true output y is

Perform optimization search by gradient descent
(just like logistic regression)

OF oErr 0 N\

()I‘*i = Err X ()H'l = Brr X ()”'/ (’/ o (/(—J]:UH’I)J)) * Chain rule:

2g(f(x))

0x
E.g., +ve error = increase network output

= increase weights on +ve inputs, decrease on -ve inputs

= —FErr x ¢'(in) x T;

Simple weight update rule:

W; «+ W;+ a x Err x ¢'(in) x z;



MULTILAYER PERCEPTRONS

Layers are usually fully connected;
numbers of hidden units typically chosen by hand

Output units a;
i

Hidden units a;
W .

Input units ay




EXPRESSIVENESS OF MLPS

All continuous functions w/2 layers, all functions w/3 layers
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Figure 18.23  FILES:. (a) The result of combining two opposite-facing soft threshold functions to
produce a ridge. (b) The result of combining two ridges to produce a bump.

Combine two opposite-facing threshold functions to make a ridge
Combine two perpendicular ridges to make a bump
Add bumps of various sizes and locations to fit any surface



BACK-PROPAGATION

Back propagation allows the information from the cost to then flow
backwards through the network, in order to compute the gradient.

Refers only to the method for computing the gradient,

Different from other algorithms, e.g., stochastic gradient
descent, used to perform learning using this gradient.

Chain Rule

Basic rule of backprop

()u
_0z0y Ox

| " Oy 0z Ow Have sufficient memory

=['(y)f'(x)f" (w)
=f(f(f (@) f'(f(w))f (w)

memory is limited.



BACK-PROPAGATION LEARNING FOR MLP

1. Output layer: weight update rules are same as for single-layer perceptron,

where A, =Err; x ¢'(in;)

S Lo Y S s I\
II ‘}n.., y T ‘I JI_/' | & X (.1'.; AN .A{ I"/ « “'/__(1 % E//X(//(///) X.l"}'

2. Hidden layer: Error back-propagation rule
back-propagate the error from the output layer:

A; = q'(in;) X Wi\, Hidden layer is responsible for
| ' ~i /\,  portion of error according to
strength of the connection.

3. Update rule for weights in hidden layer:

Wi Wit aXap XA

J




THE BACK-PROPAGATION ALGORITHM

function BACK-PROP-LEARNING( cxamples. network) returns a neural network
inputs: cxamples. a set of examples. each with input vector x and output vector v
network. a multilayer network with L layers. weights w; ;. activation function g
local variables: A. a vector of errors. indexed by network node

repeat
for each weight w; ; In network do
w; ; «— a small random number
for each example (x. ¥) in cramples do
/ * Propagate the inputs forward to compute the outputs * /
for each node i in the mput layer do
a; «— T
for { =2to L do
for each node ; in layer { do

a; — g(in;)
/ * Propagate deltas backward from output [querTo input Iq
for each node ; in the output layer d

Alj] — g'(in;) x (y;
for{i=L - 1toldo
for each node i in layer { do
Alil —g'(in)) Y, wiy Alj
/ « Update every weight in network using deltas = /
for each weight w; ; in network do

Compute the A values for the
ver output units using the
observed error

aj)
Propagate the A values back to
the previous layer.
A_) = (j/L ?‘-72,‘,' ) 1: ”T,'.,A,
Update the weights between the

w; i —w; ; + a x a; x Alj
until some stopping criterion 1s satisfied
return network

two layers.

Propagate the A values
back to the previous layer.



BACK-PROPAGATION LEARNING CONT.

At each epoch, sum gradient updates for all examples and
Apply Training curve for 100 restaurant examples:
finds exact fit

-t bk =h
o N B

Total error on training set

o N B2 OO @

O 50 100 150 200 250 300 350 400
Number of epochs

Typical problems: slow convergence, local minima



TYPES OF OUTPUT UNITS IN ANN

Choice of cost function is tightly coupled with the choice of
output units.

The role of the output layer is to provide some additional
transformation from the features to complete the task.
Types of output units

Linear Units for Gaussian output (regression)

y=WTh+b

Sigmoid Units for Bernoulli output (classification)

Softmax Units for Multinomial output (multimodal classification)

Gaussian Mixture Units (multimodal regression)

Others



ACTIVATION FUNCTIONS G

Activation function enables

, = N 4 \ )
a; < glin;) = g | —{,-'” 7.1 ) the model to be nonlinear
g(in;) ) 86m) Sigmoid function
allows the model to be
differentiable
+1 +1
- -
in n;
(a) (b)
perceptron Sigmoid perceptron

(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 + exp(-WTA))
Changing the bias weight W, ; moves the threshold location



TYPES OF HIDDEN UNITS IN ANN

Variants of Linear and sigmoid units
Variants of hyperbolic tangent h = tanh(W'x + b)

Variants of Rectified linear units (ReLU) ( the default choice of
hidden unit for modern ANN.)

Derivative through a ReLU remain large whenever the unit is
active

Gradients are more consistent

Typically used on top of a affine transformation :

h = max{0, (WTx + b)}

they cannot learn via gradient based methods on examples for
which their activation is zero.



SELECTING HIDDEN UNITS

The design of hidden units does not yet have many definitive guiding
theoretical principles.

It is difficult to determine which units will work prior to experiment

Hidden units that are not differentiable at small number of points can
still be used

Because we do not expect training to actually reach a point where the gradient

is 0, it is acceptable for the minima of the cost function to correspond to points
with undefined gradient



RECTIFIED LINEAR UNITS

ot

fO)=0

Rectified Linear Unit Parametric Rectified Linear
(ReLU) Unit (PReLU)

f(y) = max{0,y}



ANN ARCHITECTURE
Structure of ANN:

How many layers
How many units in each layer
How these units should be connected to each other.

NOTE: Deeper networks often are able to use far fewer units
per layer and far fewer parameters and often generalize to
the test set, but are also often harder to optimize.



DEEPER MODELS TEND TO
PERFORM BETTER

97 | | | | |
— —e 3. convolutional
4: 96 — —
S +—+ 3. fully connected
fc; 95 |- V¥ 11. convolutional [
gf o4 |- i
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Number of parameters X108

Figure from: Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2014). Multi-digit
number recognition from Street View imagery using deep convolutional neural networks. In International Conference on
Learning Representations .



LEARNING THE STRUCTURE

Cross-validation

If we stay with fully connected networks, structural
parameters to choose from are:
Number of hidden layers and their sizes.

Optimal brain damage

Start with fully connected network and start removing links
and units iteratively.

Tiling
Starting from single unit and start adding units to take care
of the examples that current units got wrong.



DEEP NEURAL NETWORK (DNN)

Deep Neural Network is a graphical model that can be placed
somewhere between Naive Bayes and Generalized Conditional Random

Field.
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Output units () (1) : f 9 @ ? 9 » Y
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Markov Random Field &

A

Input units . 0 '

i € Input

Naive Bayes Conditional Random Field

Fig from LeCun et al. 2015 Nature

Easy to design; exact Difficult to design:
optimization can be done
most rely on approx. algos

Increasing in Complexity



BENEFITS OF DNN LEARNING

Classical Machine Learning Pipeline in Comp Bio
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Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.
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VARIOUS APPLICATIONS

Regulatory Genomics
Alternative Splicing (Leung et al 2014; Xiong et al, 2015)
Accessible Genome Analysis (Zhous & Troyanskaya, 2015; Kelley et al, 2016)
Protein-Nucleic Acid Binding Prediction (Alipananhi et al, 2015)
Variant Analysis
Protein Structure Prediction
Secondary structure Prediction
Order/Disorder Region Prediction
Residue-Residue Contact Prediction
Applications on High throughput Data
QSAR Prediction
Circadian Rhythms
Other Topics Not Covered
Cellular Image Analysis
Medical Time Series Data



Genomic A
Features

EARLY WORKS OF DNN IN
ALTERNATIVE SPLICING

_ Deep Feedforward NN
O
O

O
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Early works still utilize
selected (large size)
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Fig 1 of Xiong et al. (2015) Science 347(6218):1254806



Group # Name Description Type # of Features
01 short-seg- I mer 28
02 short-seqg-2mer Frequency of nucleotsde patterns of different lengths (1 to 3). real (0-1) 112
03 short-seq-3mer 320
$ EE::::::E : A Describes whether exons can be translated without astop codon in :
Ve one of three possible reading frames. For example, C1A means the binary
06 tmnslatablc-g ]ALZ exons of interest are C1 + A !
07 translatable-C1C2 1
08 mean-con-score-Al2 1
0 mean-con-score-| M Mean conservation score. real (0-1) !
10 mean-con-score-12C2 1
11 mean-con-score-C111 1
12 log-length Log base 10 lengths of exons. real 5
13 log-length-ratio Log base 10 length ratios of exons. real 3
14 acceptor-site-strength Strength of acceptor and donor sites. real 2
. . 15 donor-site-strength 2
F e atu re I I Stl n g 16 frameshifi-exonA Whether exon A introduces frame shift. binary 1
17 ma-sec-struct RNA sccondary structures. real (0-1) 32
18 Smer-motif-down 54
19 6mer-motif-down 76
20 Tmer-motif-down Counts of motif clusters of different lengths (5 to 7) weighted by real 28
21 Smer-motif-u conservation u| m and downstream from alternative exon. 49
Leung et al. (2014) BT mer ol pees =
1Al H 23 Tmer-motif-up 29
Bioinformatics 30(12) — -
1 2 1 - 1 29 25 esc-ess-Cl Counts of exonic splicing enhancers and silencers. real 4
26 ese-ess-C2 4
27 pssm-SC35 PSSM scores of SC35 splicing regulator protein. 5
28 pssm-ASF-SF2 PSSM scores of ASF/SF2 splicing regulator protein. real 5
29 pssm-SRp40 PSSM scores of SRp40 splicing regulator protein. 10
30 nucleosome-position Nucleosome positioning. real 4
31 PIB Phosphotyrosine-binding domain. real 50
32 Nova-counts Counts of Nova motif. nteger 27
33 Nova-cluster Nova cluster score. real 8
34 T-nich 24
;Z tr(r:::h Counts of motif with and without weighting by conservation. real |86
37 GU-nich 32
38 Fox 24
39 Quak 8
40 SC35 22
41 SRm160 11
42 SRrp2(V30/38/40/55/75 77
43 CELF-like 2
44 CUGBP 16
:z r;:g ?;_‘ alpha Counts of motif with and without weighting by conservation. real g;
47 TRA2-beta 22
48 hnRNP-A 44
49 hnRNP-H 22
50 hnRNP-G 22
51 9GS 22
52 ASF/SF2 11
53 Sugnet 2
54 alt-AG-pos Position of the altemative AG and GT position. integer 2
55 Alu-Al2 Counts of ALU repeats. integer 12

(! and C2 denote the flanking constitutive exons ; A denotes the alternative exon ; // denotes the intron between C/ and A ; /2 denotes the intron
between A and C2



DNA/RNA SEQUENCE ANALYSIS WITH
DEEP CNN

Convolution step in Deep CNN resembles traditional
sequence “windowing” scheme

variation
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Angermueller et al. (2016) Molecular Systems Biology, (12), 878.
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DEEPSEA: CNN-BASED NONCODING
VARIANT EFFECT PREDICTION

GOAL: Identifying functional effects of . _
noncoding variants Innovative points:

1. Use long seq. 1kbp
DeepSEA CNN structure 2. multitask architecture

-> multiple output variables

Output: .
simultaneously =~ DNase | sensitivity TF binding Histone marks 919 chromatin features (1 25 DNase
predicted et 000000000 fgatu res, 690 TF features, 104
profile aer QO Q@O OO 00®O histone features)
Predict t

Training data: | Train r

ENCODE, _ { Deep convolutional network

Roadmap Epigenomics | < (DeepSEA)

chromatin profiles

Input t
Input:

genomic sequences . . .GCGTGGGTACGCTTATTCGTCAAGCTTTAGCGT. . .
1 kb . . .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT. . .

Variant position

Zhou, J., & Troyanskaya, O. G. (2015). Nature Methods, 12(10),



BASSET: CNN-BASED ACCESSIBLE
GENOME ANALYSIS

One Hot Code Sequence | 1. convert the sequence to a
ATTCCCGTAATCTACGATTAAGTCACAACCAAACCATGGATTACGGTCTGCGTTGGAATCAGGGCCGTGC

e T T e e e T, “one hot code” representation

Convolution Layers
- e e e e = == | | 2, scanning weight matrices

Qc;ﬂ || across the input matrix to
1 = i produce an output matrix
= with a row for every

L= a o Ll T Rt S convolution filter and a

Max column for every position in
ool 1 1 the input

e e S e p e s S i N KN A A e U I Y e S A N S

\

Fully Connected Layer

E - 3. linear transformation of the
L ransiormaton | input vector and apply a
fety RelLU.
Multi-task Prediction 4. linear transformation to a

Linear

e vector of 164 elements that
PN Il DEIe i  Bm i e mam Slgm0|d represents the target CeIIS

L IR T T TR N N | | i

Kelley et al. (2016). Genome Research, 26(7), 990—
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DEEPBIND: PROTEIN-NUCLEIC ACID
BINDING SITE PREDICTION

DeepBind is a CNN based supervised learning where
Input: segments of sequences and
labels (output): experimentally determined binding score (ex. ChlP-seq peaks)

f(s) = nety, (pool (rectb(conv‘,(s))))

X = convy(s) _ : Threshold of
"m° 4 ¥ = rectify, (X) each motif

detector k z, = max(Y; ., ..., Y, )
Xi'k - Zzsi*’l‘nle'l’vl Yi,k = mHX(O. Xi.k - bk) k ( 1k ""k)

j=1 =1

z = max_pool(Y)

Motif scans T _adres g /&
padded sequence S '_ W, "0,
Motif detector |\/|k CiC Thresholds Weights
Current model S — P
parameters - - 4
Parameter ‘ 3 ‘.‘
Mpcaies Weighted-finear

Update parameter by stochastic gradient descent ke
combination of pooled

features
Alipanahi et al (2015) Nature Biotechnology, 33(8), 831—

[aYaVYal



MOTIF EXTRACTION CAPABILITY OF DEEP
BIND

The trained motif detector M, and visualization with sequence

| Tec“"°'°gyj PRDM1 EBF1 NR4A2 ZC3H10
Krown { ChiP e ol ‘A chiP Icc& ! A commfr()A ) PEM
u [l a

motif NMTV'\NRT b SAWIVAC | . oh C <

| SELEX — Chlp‘ l " I " SELEXM AIA : . : ChiP . Al . SELE‘X‘ r PEM AC

Dee&?)::;g 1| =488 TYAAAVL | cABAUTURARCT | AL LWV VWA | V. VWA, ""r'JL Wi

*ChlP-s e Clader A'“'A'T TCCC b, Tﬂt * et :

unrelatg AA0 'T"HH'YT Y Vl.. . vis , 2 V"V v i ‘:.\JTC; . ;.YV.TC.A .C .‘:C ».
motif(s) { iy T"‘ [ * m CCC TE AA‘ * o ‘ . .
T SSLEX| [l JobasI | . JTC" G w1’C vc vc

Generating sequence logo to find motifs

1. Feed all sequences from the test set through the convolutional and
rectification stages of the DeepBind model,

Align all the sequences that passed the activation threshold for at least one
position J.

Generate a position frequency matrix (PFM) and transform it into a
sequence logo.

2.

3.

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831—

[aYaVYal



RNN FOR VARIABLE LENGTH SEQ. INPUT

Recurrent Neural Network
Able to work with sequence input of variable length
Capture long range interactions within the input sequences and across outputs

Difficult to work with and train

0

9 OI—I il i“-}
v W v s v s v
s w t—-1 t St+1
O:) :’ > —> O — O » O >
f Unfold T Woxy Wy W
U U U U
X X X X

t-1 t t+1
A recurrent neural network and the unfolding in time of the

computation involved in its forward computation. (fig 5 of
LeCun et al. 2015 Nature)

Not many success here



PROTEIN STRUCTURE PREDICTION

Protein structure prediction methods tend to apply unsuper
vised method or combination of NN methods

Types of unsupervised DNN methods:
Restricted Boltzmann Machines (RBM)
Deep Belief Networks

Combination methods
Deep Conditional Neural Fields



STACKING RBM IN PROTEIN
FOLD RECOGNITION

84 features from five
types of sequence
alignment and/or protein
structure prediction tools

Input Features (pairwise similarity scores between two proteins)

Layer by layer learning
with restricted Boltzmann
machine (RBM).

Hidden nodes

Hidden nodes

Hidden nodes

Same fold or not

Classification node
(in the same fold or not)

Jo et al. (2015). Scientific Reports, 5, 1757 3.



DEEPCNF: SECONDARY STRUCTURE
PREDICTION

The architecture of Deep Convolutional Neural Field ,cq window size of 11:

average length of an alpha helix is
Xi the associated input around eleven residues and that of a
features of residue i. beta strand is around six

Input features
1st layer
(Bottom layer)

5-7 layer
CNN

2nd layer

3rd layer T

EHS _____ ,,,,, (fon aver, J conditional random

g Hiddenlayels  T1€1d (CRF) with U
. and T being the
O DD o
4 output labels | Model parameters.
Calculates conditional probability of
SS labels on input features

Wang et al. (2016) Scientific Reports, 6(January), 18962.



CIRCADIAN RHYTHMS

GOAL.: inferring whether a given genes oscillate in circadian fashion or not
and inferring the time at which a set of measurements was taken
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BIO_CYCLE: estimate whicri=signals are
periodic in high-throughput circadian
experiments, producing estimates of
amplitudes, periods, phases, as well as
several statistical significance measures.
DATA: data sampled over 24 and 48h

Agostinelli, et al. (2016). Bioinformatics, 32(12), i8—i17.

¥
see ooe
I
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RIO CTOWCK  The antnite are
BIO CLOCK: estimate the time at
which a particular single-time-point
transcriptomic experiment was
carried
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