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OUTLINE 

´ Part 1: 
« Big Data Characteristics in Bioinformatics Data 
« Matrix Factorization Based Mining 
« Tensor Factorization Based Mining  

´Part 2:  
«Deep Neural Network and Bio-Big(?) Data 

²NN Basics & Types of DNN 
²Bio-Big Data Applications 

«Convolution Neural Network  
²Theory 
²Practice 
²TensorFlow 
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PART 2.1:  
DEEP NEURAL NETWORK AND BIO-BIG DATA 
 - NN BASICS & TYPES OF DNN 
 - BIO-BIG DATA APPLICATIONS 
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ARTIFICIAL NEURAL NETWORKS 

´ Neural networks 
´ Perceptrons 
´ Multilayer perceptrons 
´ Applications of neural networks 
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Part 2.1.1 Slides are mostly made from AIMA resources and  
 Andrew W. Moore’s tutorials: http://www.cs.cmu.edu/~awm/tutorials  



EXAMPLE APPLICATIONS 

ANN is robust to error in the training data and has 
been successfully applied to various real problems  

«Speech/voice recognition  
«Face recognition 
«Handwriting recognitions  
«It can also be used where symbolic representations are 

used as cases for Decision tree learning 
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CHARACTERISTICS OF ANN 

´ Instances are represented by many attribute-value pair (supervised) 
´ The target function output may be discrete, real, or vector 
´ Training data may contain error 
´ Long training times are acceptable 
´ Fast evaluation of the learning target function may be required 
´ The ability of humans to understand the learned target function is not 

important.  
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PRIMITIVE UNITS THAT MAKE UP ANN 

´ Other Units: 
« Linear units 
« Sigmoid units 
« Rectified linear units 
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Learning a perceptron involves 
choosing values for the weights wi 

affine 
transformation  

Perceptron  



ANN STRUCTURE: CONNECTING UNITS 

´ Feed-forward networks: connections only in one direction (directed 
acyclic graph)  
« Feed-forward network implement functions, have no internal state 
« Examples:  

² single-layer perceptrons (output is 0 or 1)  
² multi-layer perceptrons 
² Convolution neural network 

 
´ Recurrent networks: 

« Have directed cycles (feedback loops) with delays ⇒ have internal state (like 
flip-flops), can oscillate etc. 

« Interesting models of the brain but more difficult to understand.  
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FEED-FORWARD EXAMPLE 
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Feed-forward network = a parameterized family of nonlinear functions: 

Adjusting weights changes the function: do learning this way! 



SINGLE LAYER FEED-FORWARD NEURAL 
NETWORKS: PERCEPTRON NETWORK 
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Output units all operate separately — no shared weights 
Adjusting weights moves the location, orientation, and steepness of 
cliff.  

Every unit connects directly form the network’s inputs to it’s output 

3 separate 
learning tasks 



EXPRESSIVENESS OF SINGLE LAYER 
PERCEPTRONS 
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• Consider a perceptron with g = step function (Rosenblatt, 1957, 1960) 

• Can represent AND, OR, NOT, majority, etc., but not XOR 
• Represents a linear separator in input space: 

EX> Two bit adder 
Two separate component 
1. Carry 2. sum 

Carry: AND 

Sum: OR 

X1 X2 Y3 
(carry) 

Y4 
(sum) 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 1 



PERCEPTRON LEARNING 
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Learn by adjusting weights to reduce error on training set 
The squared error for an example with input x and true output y is 

Perform optimization search by gradient descent  
(just like logistic regression) 

Simple weight update rule: 

E.g., +ve error ⇒ increase network output 
⇒ increase weights on +ve inputs, decrease on -ve inputs 

* Chain rule: 
𝜕𝑔 𝑓 𝑥

𝜕x

=
𝑔′ 𝑓 𝑥 𝜕𝑓 𝑥

𝜕𝑥  



MULTILAYER PERCEPTRONS 
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Layers are usually fully connected; 
numbers of hidden units typically chosen by hand 



EXPRESSIVENESS OF MLPS 
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All continuous functions w/2 layers, all functions w/3 layers 

Combine two opposite-facing threshold functions to make a ridge 
Combine two perpendicular ridges to make a bump 
Add bumps of various sizes and locations to fit any surface 



BACK-PROPAGATION 

´ Back propagation allows the information from the cost to then flow 
backwards through the network, in order to compute the gradient. 
«Refers only to the method for computing the gradient,  
«Different from other algorithms, e.g., stochastic gradient 

descent, used to perform learning using this gradient. 
´Chain Rule 

« Basic rule of backprop 
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memory is limited. 

Have sufficient memory 



BACK-PROPAGATION LEARNING FOR MLP 
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1. Output layer: weight update rules are same as for single-layer perceptron, 

where 

2. Hidden layer: Error back-propagation rule  
 back-propagate the error from the output layer: 

3. Update rule for weights in hidden layer: 

j 
i 

Hidden layer is responsible for 
 portion of error according to 
strength of the connection.  

i 
i 



THE BACK-PROPAGATION ALGORITHM 

 

BIML 2017 Feb. 16, 2017 

Compute the ∆ values for the 
output units using the 
observed error 

Propagate the ∆  values back to 
the previous layer. 

Update the weights between the 
two layers.  



BACK-PROPAGATION LEARNING CONT. 
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At each epoch, sum gradient updates for all examples and 
Apply Training curve for 100 restaurant examples:  
finds exact fit 

Typical problems: slow convergence, local minima 



TYPES OF OUTPUT UNITS IN ANN  

´ Choice of cost function is tightly coupled with the choice of 
output units.  

´ The role of the output layer is to provide some additional 
transformation from the features to complete the task. 

´ Types of output units  
«Linear Units for Gaussian output (regression)  

²𝑦� = 𝑊𝑇ℎ + 𝑏 
«Sigmoid Units for Bernoulli output (classification) 
«Softmax Units for Multinomial output (multimodal classification)  
«Gaussian Mixture Units (multimodal regression)  
«Others  
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ACTIVATION FUNCTIONS G 
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(a) is a step function or threshold function 
(b) is a sigmoid function 1/(1 + exp(-WTA)) 
Changing the bias weight W0,i moves the threshold location 

Hard threshold: 
perceptron 

Logistic function: 
Sigmoid perceptron 

Activation function enables 
the model to be nonlinear 

Sigmoid function 
allows the model to be 

differentiable  



TYPES OF HIDDEN UNITS IN ANN 

´ Variants of Linear and sigmoid units 
´ Variants of hyperbolic tangent   ℎ = 𝑡𝑡𝑡ℎ(𝑊𝑇𝑥 + 𝑏) 
´ Variants of Rectified linear units (ReLU) ( the default choice of 

hidden unit for modern ANN.)  
«Derivative through a ReLU remain large whenever the unit is 

active 
«Gradients are more consistent  
«Typically used on top of a affine transformation : 

 ℎ = max {0, (𝑊𝑇𝑥 + 𝑏)} 
« they cannot learn via gradient based methods on examples for 

which their activation is zero. 
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SELECTING HIDDEN UNITS 

´ The design of hidden units does not yet have many definitive guiding 
theoretical principles. 

´ It is difficult to determine which units will work prior to experiment 
´ Hidden units that are not differentiable at small number of points can 

still be used  
« Because we do not expect training to actually reach a point where the gradient 

is 0 , it is acceptable for the minima of the cost function to correspond to points 
with undefined gradient 
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RECTIFIED LINEAR UNITS 
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Parametric Rectified Linear 
Unit (PReLU)  

Rectified Linear Unit 
(ReLU) 
f(y) = max{0,y} 



ANN ARCHITECTURE 

´Structure of ANN:  
«How many layers 
«How many units in each layer 
«How these units should be connected to each other. 

 
 
´ NOTE: Deeper networks often are able to use far fewer units 

per layer and far fewer parameters and often generalize to 
the test set, but are also often harder to optimize. 
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DEEPER MODELS TEND TO  
PERFORM BETTER 
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Figure from: Goodfellow, I. J., Bulatov, Y., Ibarz, J., Arnoud, S., and Shet, V. (2014). Multi-digit 
number recognition from Street View imagery using deep convolutional neural networks. In International Conference on 
Learning Representations . 



LEARNING THE STRUCTURE 

´Cross-validation 
«If we stay with fully connected networks, structural 

parameters to choose from are: 
²Number of hidden layers and their sizes.  

´Optimal brain damage 
«Start with fully connected network and start removing links 

and units iteratively.  
´Tiling 

«Starting from single unit and start adding units to take care 
of the examples that current units got wrong.  
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DEEP NEURAL NETWORK (DNN) 

Naïve Bayes 
Markov Random Field & 
Conditional Random Field 

Deep Neural Network is a graphical model that can be placed 
somewhere between Naïve Bayes and Generalized Conditional Random 
Field.  

DNN 

Increasing  in Complexity 

      

Difficult to design;  
most rely on approx. algos 

Easy to design; exact 
optimization can be done 

Fig from LeCun et al. 2015 Nature 
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BENEFITS OF DNN LEARNING 

Classical Machine Learning Pipeline in Comp Bio 

Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

Deep Learning in Comp Bio. 

Reduced efforts 
in data cleaning 

Auto Representation 
Learning 

Hidden layers 
extract 

features in 
various 

resolution 
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VARIOUS  APPLICATIONS 
´ Regulatory Genomics 

« Alternative Splicing (Leung et al 2014; Xiong et al, 2015) 
« Accessible Genome Analysis (Zhous & Troyanskaya, 2015; Kelley et al, 2016) 
« Protein-Nucleic Acid Binding Prediction (Alipananhi et al, 2015) 
« Variant Analysis 

´ Protein Structure Prediction 
« Secondary structure Prediction 
« Order/Disorder Region Prediction 
« Residue-Residue Contact Prediction 

´ Applications on High throughput Data 
« QSAR Prediction  
« Circadian Rhythms 

´ Other Topics Not Covered 
« Cellular Image Analysis  
« Medical Time Series Data 
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EARLY WORKS OF DNN IN  
ALTERNATIVE SPLICING 

Fig 1 of Xiong et al. (2015) Science 347(6218):1254806 

Fig 1 of Leung et al. (2014) Bioinformatics 30(12) 121-129  

Fully connected Feedforward NN 
(Bayesian Deep Learning) 

Early works still utilize 
selected (large size) 
features 

“Deep learning of the tissue-
regulated splicing code” 

Deep Feedforward NN  

1393 features 
extracted from each 
exon of 5 different 

tissue types 
1000 predetermined 

features from 
candidate exon and 

adjacent introns 
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Feature listing 

Leung et al. (2014) 
Bioinformatics 30(12)  
121-129  
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DNA/RNA SEQUENCE ANALYSIS WITH  
DEEP CNN 

 

Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

Convolution step in Deep CNN resembles traditional 
sequence “windowing” scheme  

Window 
size of 5 
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DEEPSEA: CNN-BASED NONCODING 
VARIANT EFFECT PREDICTION 

Zhou, J., & Troyanskaya, O. G. (2015). Nature Methods, 12(10), 
931 4   

Innovative points: 
1. Use long seq. 1kbp  
2. multitask architecture  
-> multiple output variables 

DeepSEA CNN structure 

DNase I sensitivity  
Output: 
simultaneously 
predicted 
chromatin-
profile 

1 kbp 

919 chromatin features (125 DNase 
features, 690 TF features, 104 
histone features) 

GOAL: Identifying functional effects of 
noncoding variants 
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BASSET: CNN-BASED ACCESSIBLE  
GENOME ANALYSIS 

1. convert the sequence to a  
“one hot code” representation 

2. scanning weight matrices 
across the input matrix to 
produce an output matrix 
with a row for every 
convolution filter and a 
column for every position in 
the input 

3. linear transformation of the 
input vector and apply a 
ReLU. 

4. linear transformation to a 
vector of 164 elements that 
represents the target cells 

Kelley et al. (2016).  Genome Research, 26(7), 990–
999 
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DEEPBIND: PROTEIN–NUCLEIC ACID  
BINDING SITE PREDICTION 

DeepBind is a CNN based supervised learning where  
Input: segments of sequences and  
labels (output): experimentally determined binding score (ex. ChIP-seq peaks)  

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–
838   

Motif detector Mk 

padded sequence S 

Threshold of 
each motif 
detector k 

Weighted linear 
combination of pooled 
features 

Update parameter by stochastic gradient descent 
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MOTIF EXTRACTION CAPABILITY OF DEEP
BIND 

The trained motif detector Mk and visualization with sequence 
logo    

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–
838   

Generating sequence logo to find motifs 
1. Feed all sequences from the test set through the convolutional and 

rectification stages of the DeepBind model,  
2. Align all the sequences that passed the activation threshold for at least one 

position i.  
3. Generate a position frequency matrix (PFM) and transform it into a 

sequence logo. 
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RNN FOR VARIABLE LENGTH SEQ. INPUT 

´ Recurrent Neural Network 
« Able to work with sequence input of variable length 
« Capture long range interactions within the input sequences and across outputs

.  
« Difficult to work with and train 

 
 
 
 
 
 
 
 
 

« Not many success here 

A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. (fig 5 of 
LeCun et al. 2015 Nature) 
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PROTEIN STRUCTURE PREDICTION  

´ Protein structure prediction methods tend to apply unsuper
vised method or combination of NN methods 

´ Types of unsupervised DNN methods:  
«Restricted Boltzmann Machines (RBM) 
«Deep Belief Networks  

´ Combination methods 
«Deep Conditional Neural Fields 
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STACKING RBM IN PROTEIN  
FOLD RECOGNITION 

 

Same fold or not 

84 features from five 
types of sequence 
alignment and/or protein 
structure prediction tools 

Layer by layer learning 
with restricted Boltzmann 
machine (RBM). 

Jo et al. (2015). Scientific Reports, 5, 17573.  
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DEEPCNF: SECONDARY STRUCTURE  
PREDICTION 

Wang et al. (2016) Scientific Reports, 6(January), 18962.  

Xi the associated input 
features of residue i.   

The architecture of Deep Convolutional Neural Field fixed window size of 11:   
average length of an alpha helix is 
around eleven residues and that of a 
beta strand is around six 

conditional random 
field (CRF) with U 
and T being the 
model parameters. 

5-7 layer 
CNN  

Calculates conditional probability of 
SS labels on input features 
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CIRCADIAN RHYTHMS 

BIO_CYCLE: estimate which signals are 
periodic in high-throughput circadian 
experiments, producing estimates of 
amplitudes, periods, phases, as well as 
several statistical significance measures.  
DATA: data sampled over 24 and 48h 

GOAL: inferring whether a given genes oscillate in circadian fashion or not 
and inferring the time at which a set of measurements was taken 

BIO_CLOCK: estimate the time at 
which a particular single-time-point 
transcriptomic experiment was 
carried 

Agostinelli, et al. (2016). Bioinformatics, 32(12), i8–i17.  
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