# PART 2.2: CONVOLUTION NEURAL NETWORK - THEORY

Figures and content retrieved from Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep Learning*. MIT Press.

### **CONVOLUTION NEURAL NETWORK (CNN)**

- First proposed by LeCun in 1989
- "Convolutional networks are simply neural networks that use convolution in place of general matrix multiplication in at least one of their layers." [Goodfellow et al. 2016]
- Devised for processing data with grid-like topology.
  - + EX> Time series data (1D), image data (2D)
- The main difference between a CNN and regular NN is that it uses convolution operation instead of matrix multiplication as in NN.
- Operations in CNN: Convolution and Pooling

### **COMPONENT 1: CONVOLUTION**

Working Example: Tracking location of spaceship with a laser sensor

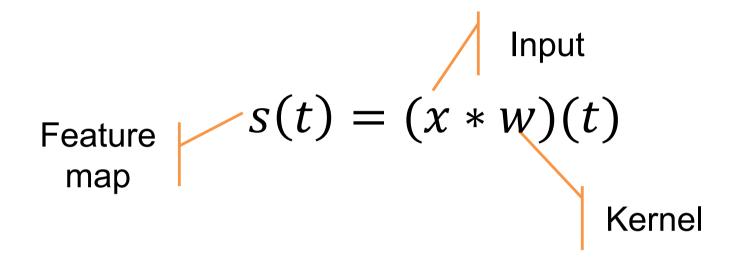
- $\times$  Sensor output: x(t), position of spaceship at time t
- × Assume noisy sensor:
  - + We want to take the weighted avg. of measurements
  - + Less aged, a, measurement should have higher weights, w(a).

Rewritten with convolution operation , \*. 
$$s(t) = \int x(a)w(t-w)da$$
 One example of convolution convolution 
$$s(t) = \int x(a)w(t-w)da$$
 convolution

+ In a discrete time:

$$s(t) = (x * w)(t) = \sum_{-\infty}^{\infty} x(a)w(t - a)$$

### TERMINOLOGY



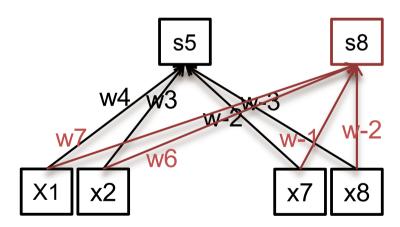
- x Input: usually a tensor of data
- × Kernel: usually a tensor of parameters that are adapted by the learning algorithm.

### 1D DATA &

### \* Point-wise convolution output for 1D data

$$s(t) = (x * w)(t) = \sum_{a} x(a)w(t - a)$$

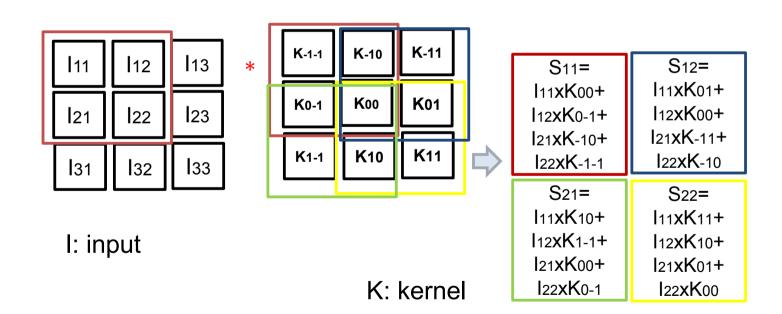
Weight based on distance to t from a



### **2D DATA**

Point-wise convolution output for 2D data

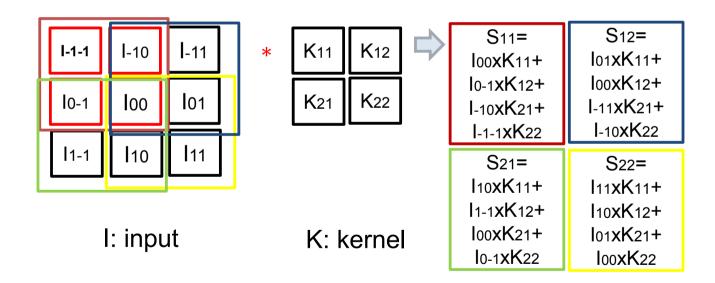
$$s(t) = (I * K)(i,j) = \sum_{m} \sum_{n} I(m,n)K(i-m,j-n)$$



### **2D DATA**

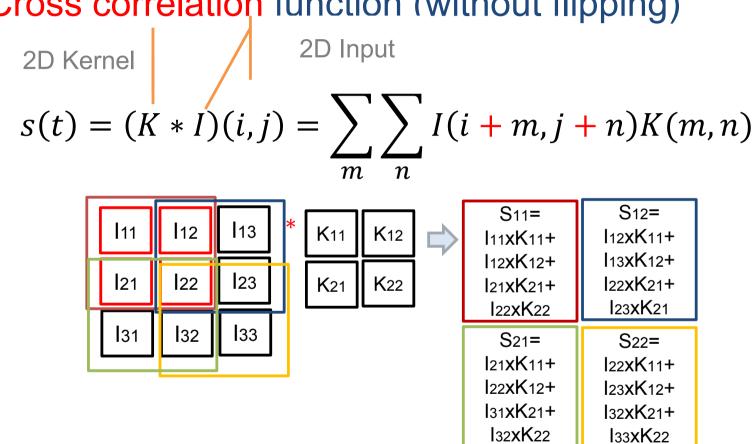
Convolution is commutative

$$s(t) = (K * I)(i,j) = \sum_{m} \sum_{n} I(i - m, j - n)K(m, n)$$



### EXTENDED DEFINITION OF CONVOLUTION

\* Cross correlation function (without flipping)



» Note: Many machine learning libraries implement crosscorrelation but call it convolution.

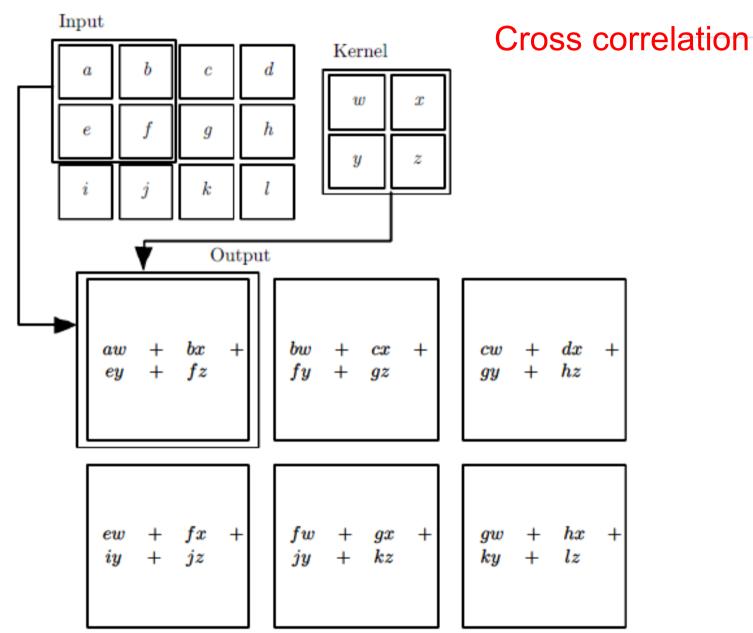


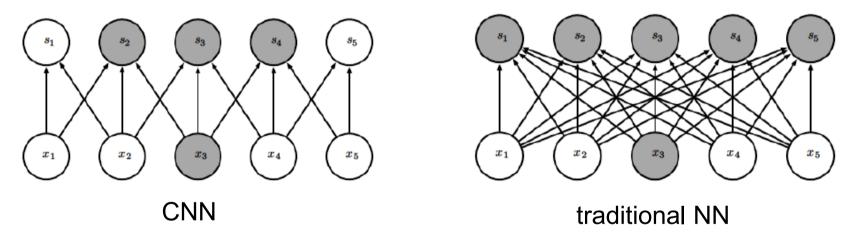
Figure 9.1 of Goodfellow et al. 2016:

### **MOTIVATION**

- Convolution enable the following:
  - +Sparse interactions,
  - +Parameter sharing
  - +Equivariant representations.
- Provides a means for working with inputs of variable size.

### **SPARSE INTERACTIONS**

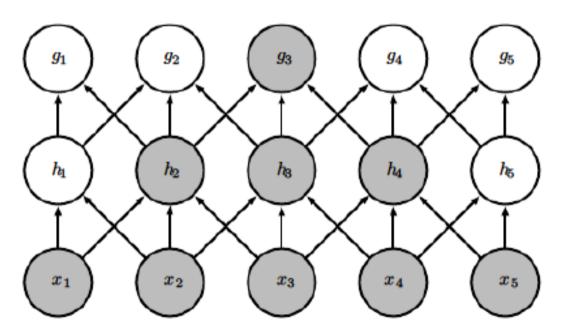
- \* Convolutional networks typically have sparse interactions
- » Q: How can it be done?
- × A: Making the kernel smaller than the input.



- × Q: Why is it beneficial?
- × A:1) fewer parameters: reduces the memory requirements and improves its statistical efficiency.
  - 2) computing the output requires fewer operations.

### **SPARSE INTERACTIONS**

- × Q: Would sparsity cause reduction on performance?
- \* A: Not really, since we have deep layers. Even though *direct* connections in a convolutional net are very sparse, units in the deeper layers can be *indirectly* connected to all or most of the input image.



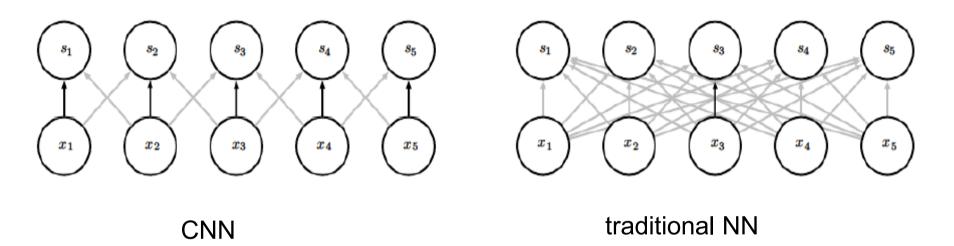
### PARAMETER SHARING

- \* Parameter sharing is the uses of same parameter for more than one function in a model.
  - + Note: In a traditional NN, each element of the weight matrix is used exactly once when computing the output of a layer.

### **\* AKA tied weights:**

+ Value of the weight applied to one input is tied to the value of a weight applied in other location in the CNN

### **PARAMETER SHARING**



- » Q: How is it beneficial?
- \* A: Reduce the storage requirements of the model to *k* parameters.
- × Q: Does it decrease runtime of forward propagation?
- x A: No, sill O(k x n)

### **EQUIVARIANT REPRESENTATIONS**

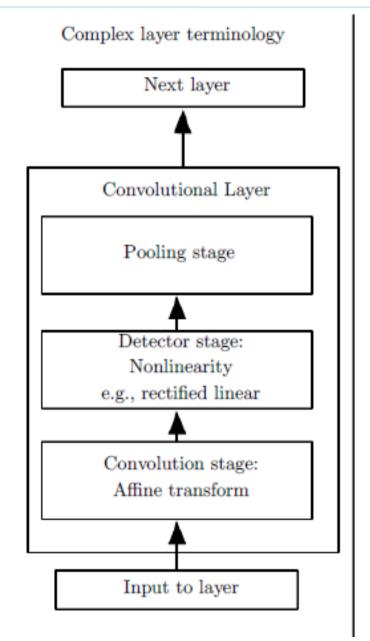
- In case of convolution, the particular form of parameter sharing causes the layer to have a property called equivariance to translation
  - +EX> shifting righ/left or up/down the input 2D image does not change the output of CNN

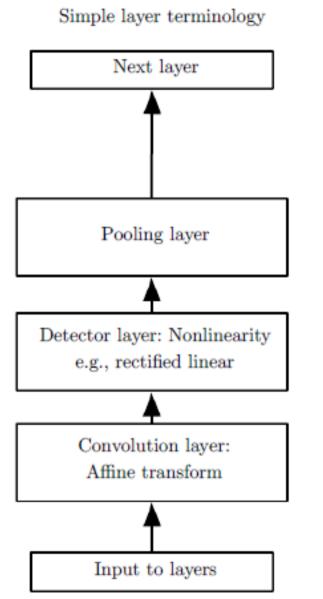
### **EQUIVARIANT REPRESENTATIONS**

- × Q: Do we always want equivariance to translation?
- × A: No, we may want to learn location specific patterns.
- × A: No, but **pooling** can help.

### **COMPONENT 2: POOLING**

components of a typical convolutional neural network layer.





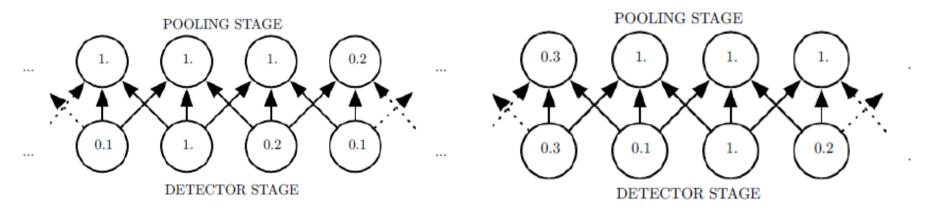
### **POOLING**

- Pooling function: replaces the output of the network at a certain location with a summary statistic of the nearby outputs
- × Types of pooling
  - + Max pooling
  - +Average pooling
  - +L2 norm
  - + Weighted average

### **POOLING BENEFITS**

- Representation becomes approximately invariant to small translations of the input.
- \* "Invariance to local translation can be a very useful property if we care more about whether some feature is present than exactly where it is."

### max pooling example:

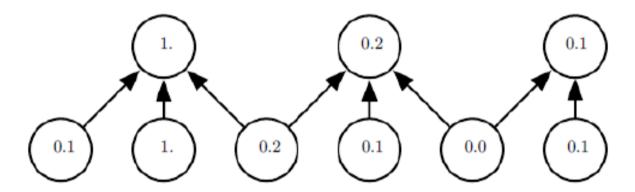


Original input

Input shifted to the right by one pixel

### **POOLING WITH DOWN-SAMPLING**

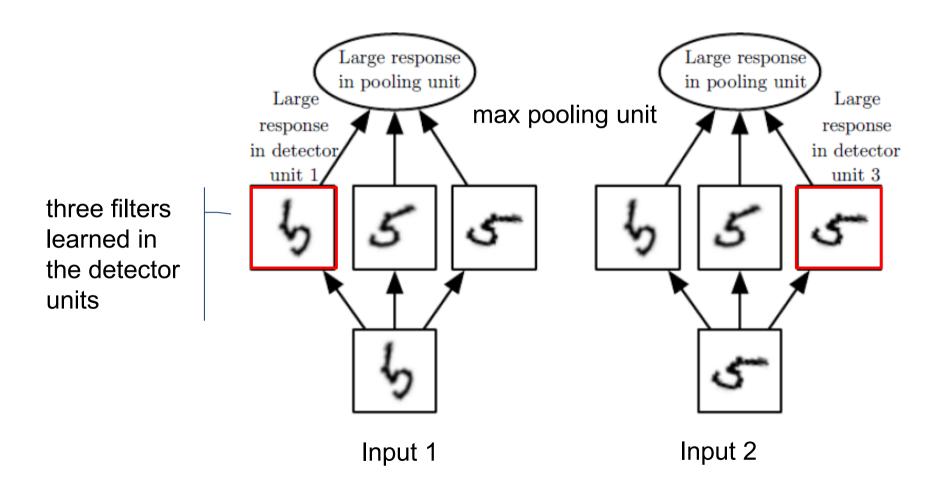
× Pooling is needed for down-sampling



Example of max-pooling with a pool width of three and a stride between pools of two.

### **EXAMPLE OF LEARNED INVARIANCES**

CNN with three filters are intended to detect a hand-written 5.



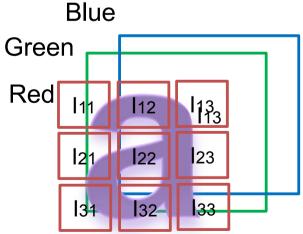
### **INFINITELY STRONG PRIOR**

- Convolution and Pooling acts as a infinitely strong prior
- Infinitely strong prior places zero probability on some parameters and says that these parameter values are completely forbidden
  - + In another word, these parameters don't need to be learned.
- x Like any strong priors Convolution and pooling can cause underfitting.
- \* We should only compare convolutional models to other convolutional models in benchmarks of statistical learning performance.

# PART 2.2: CONVOLUTION NEURAL NETWORK - PRACTICE

### VARIANTS OF THE BASIC CONVOLUTION FUNCTION

- Convolution functions used in practice differ slightly compared to convolution operation as it is usually understood in the mathematical literature.
- x 1) The input is usually not just a grid of real values but grid of vector-valued observations.
  - + Ex> Color image has red, green and blue intensity at each pixel (3-D tensors)



### VARIANTS OF THE BASIC CONVOLUTION FUNCTION

- \* Working example: colored 2D image
  - + Assume 4-D kernel tensor K (4D)
    - × Element  $K_{i,l,m,n}$  giving the connection strength between a unit in channel i of the output and a unit in channel l of the input, with an offset of m rows and n columns between the output unit and the input unit.
  - + Assume input consists of observed data V (3D)
    - $\times$  Element  $V_{i,j,k}$  giving the value of the input unit within channel i at row j and column k.
  - + Assume output consists of Z with the same format as V (3D)
  - + If Z is produced by convolving K across V without flipping K, then

$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m-1,k+n-1} K_{i,l,m,n}$$

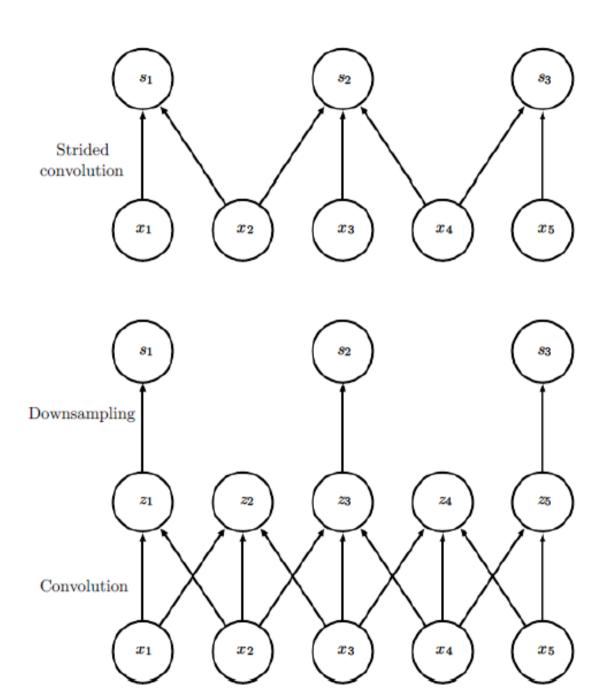
### **DOWNSAMPLING - STRIDE**

- We may want to skip over some positions of the kernel in order to reduce the computational cost (at the expense of not extracting our features as finely).
- We can think of this as downsampling the output of the full convolution function
- \* We refer to s as the stride of this downsampled convolution

$$Z_{i,j,k} = c(K, V, s)_{i,j,k}$$

$$= \sum_{l,m,n} [V_{l,(j-1)*s+m,(k-1)*s+n} K_{i,l,m,n}]$$

## Stride example S=2



### **ZERO-PADDING**

### × Valid convolution:

+ Extreme case in which no zero-padding is used whatsoever, and the convolution kernel is only allowed to visit positions where the entire kernel is contained entirely within the input

### × Same convolution:

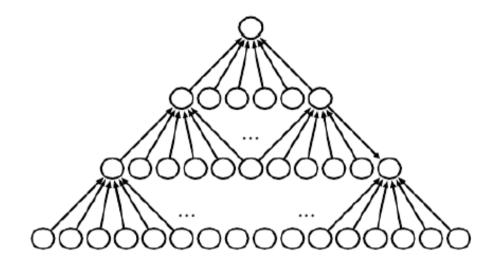
+Just enough zero-padding is added to keep the size of the output equal to the size of the input

### × Full convolution

+ Other extreme case where enough zeroes are added for every pixel to be visited k times in each direction, resulting an output image of width m + k - 1.

### **ZERO PADDING**

Valid convolution



Same convolution



### WHAT IF WE DON'T WANT TO CONVOLUTE?

- In some application, it's more appropriate to not use convolution, but rather locally connected layers
- × Q: How do we modify the model?
- \* A: Unshared convolution approach

### **UNSHARED CONVOLUTION**

- x Assume weight are in a 6-D tensor W
  - +  $w_{i,j,k,l,m,n}$ : i, the output channel, j, the output row, k, the output column, l, the input channel, m, the row offset within the input, and n, the column offset within the input.
- Pro: Able to learn location sensitive filters.
- Con: Memory requirements increase only by a factor of the size of the entire output feature map.

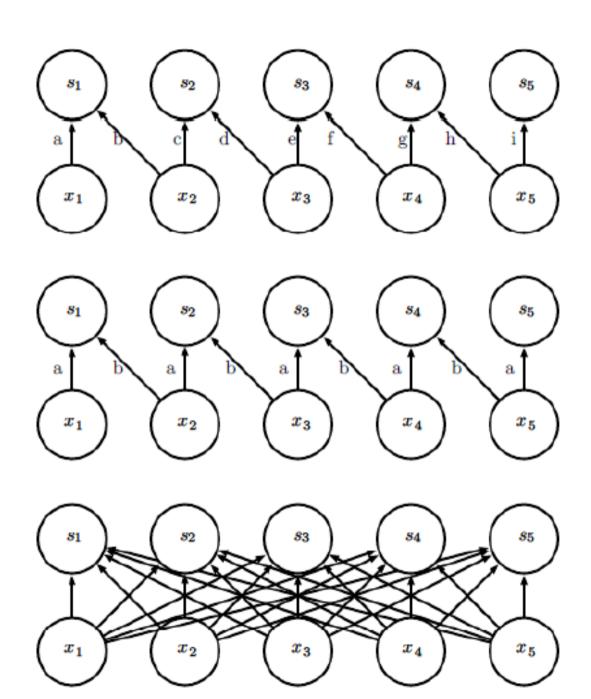
$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m-1,k+n-1} w_{i,j,k,l,m,n}$$

Unshared convolution, aka locally connected layer, since it is similar operation to discrete convolution with a small kernel, but without sharing parameters across locations

Unshared convolution (locally connected layer)

Convolution (parameter sharing)

Fully connected (no parameter sharing)



### **TILED CONVOLUTION**

Tiled convolution learn a set of kernels that is rotated through as we move through space, rather than learning a separate set of weights at every spatial location as in locally connected layer.

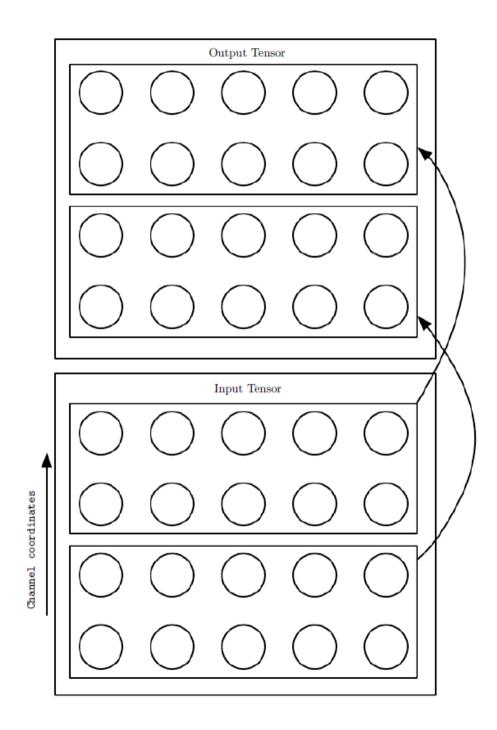
$$Z_{i,j,k} = \sum_{l,m,n} V_{l,j+m-1,k+n-1} K_{i,l,m,n,j\%t+1,k\%t+1}$$

### × Pro:

- + It Offers a compromise between a convolutional layer and a locally connected layer.
- + Memory requirements for storing the parameters will incre ase only by a factor of the size of this set of kernels

Locally connected layers  $x_3$  $x_4$ Tiled convolution  $x_3$  $x_5$  $x_4$  $x_1$ Standard convolution

convolutional network with the first two output channels connected



### **COMPUTE THE GRADIENTS IN CNN**

- × 3 operations needed to compute the gradients in CNN
  - +Convolution,
  - +Backprop from output to weights, and
  - +Backprop from output to inputs

\* Details omitted

### **CHOOSING POOLING METHODS**

#### × No best answer here but:

- Some theoretical work gives guidance as to which kinds of pooling one should use in various situations (Boureau et al. 2010).
- \* It is also possible to dynamically pool features together, for example, by running a clustering algorithm on the locations of interesting features (Boureau *et al.*, 2011). This approach yields a different set of pooling regions for each image.
- \* Another approach is to *learn* a single pooling structure that is then applied to all images (Jia *et al.*, 2012).

### RANDOM OR UNSUPERVISED FEATURES

- \* Feature learning in CNN is very expensive
  - + Every gradient step requires complete run of forward propagation and backward propagation
- \* Three ways to obtaining convolution kernels without supervised training.
  - + Initialize them randomly
  - + Design them by hand
  - + Learn the kernels with an unsupervised criterion
    - ×Apply k-means clustering to small image patches, then use each learned centroid as a convolution kernel.
    - ×Greedy layer-wise pretraining (convolutional deep belief network)

# GATHER MORE DATA OR RETUNE THE MODEL?

- \* It is often much better to gather more data than to improve the learning algorithm. But data can be expensive.
- \* Measure the training set performance.
  - + Poor training set performance: the learning algorithm is not using the training data properly.
    - ×Try increasing the size of the model more layers or more hidden units
    - ×Try improving the learning algorithm tune the hyperparameters
    - If the two does not work, quality of the training data may be poor.

# GATHER MORE DATA OR RETUNE THE MODEL?

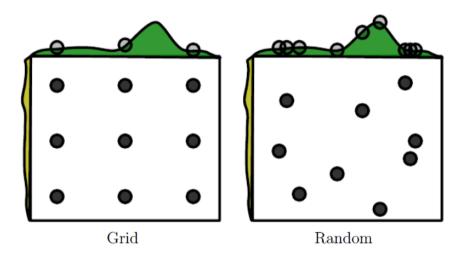
- + Acceptable training set performance, then measure the performance of test set.
  - xIf test set performance is good enough no more work to do.
  - xIf test set performance is bad (big gap between training and testing),
    - \*Gathering more data most effective solutions.
    - \*Reduce the size of the model by adjusting hyperparameters, e.g., weight decay coefficients,
    - \*Adding regularization strategies such as dropout.

### **SELECTING HYPERPARAMETERS**

- × Choosing hyperparameters manually
  - + Requires understanding what the hyperparameters do and how machine learning models achieve good generalization
  - + Requires understanding of how the data behaves
- \* Choosing hyperparameters automatically
  - + Computationally costly

# CHOOSING HYPERPARAMETERS AUTOMATICALLY

- × Grid search.
- \* Random Search
  - + Random search finds good solutions faster than grid search
- \* Combination approach
  - + Gird search then random search on selected range of values
- Model-Based optimization
  - + Difficult



Grid search vs random search

- two hyperparameter case

### PARAMETER INITIALIZATION

- \* Important to initialize all weights to small random values.
- \* Bias terms can be initialized to zero or to small positive values.