
PART 2.2: CONVOLUTION  
NEURAL NETWORK - THEORY 

Figures and content retrieved from Goodfellow, I., Bengio, Y., & Courville, A. 
(2016). Deep Learning. MIT Press.  
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CONVOLUTION NEURAL NETWORK (CNN) 

´ First proposed by LeCun in 1989 
´ “Convolutional networks are simply neural networks that 

use convolution in place of general matrix multiplication in 
at least one of their layers.” [Goodfellow et al. 2016] 

´ Devised for processing data with grid-like topology. 
« EX> Time series data (1D), image data (2D)  
 

´ The main difference between a CNN and regular NN is that 
it uses convolution operation instead of matrix 
multiplication as in NN.  
 

´ Operations in CNN: Convolution and Pooling 
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COMPONENT 1: CONVOLUTION 

Working Example: Tracking location of spaceship with a 
laser sensor  
´Sensor output: 𝑥 𝑡  , position of spaceship at time t 
´Assume noisy sensor:  

«We want to take the weighted avg. of measurements 
«Less aged, a, measurement should have higher weights, w(a). 

𝑠 𝑡 = �𝑥 𝑡 𝑤 𝑡 − 𝑤 𝑑𝑡 

𝑠 𝑡 = (𝑥 ∗ 𝑤)(𝑡) 
« In a discrete time: 

𝑠 𝑡 = 𝑥 ∗ 𝑤 𝑡 = � 𝑥 𝑡 𝑤(𝑡 − 𝑡)
∞

−∞
 

 

One example of 
convolution Rewritten with 

convolution 
operation , *.  
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TERMINOLOGY 

´ Input: usually a tensor of data  
´Kernel: usually a tensor of parameters that are 

adapted by the learning algorithm.  
 
 
 

Input 

Kernel 

Feature 
map 

𝑠 𝑡 = (𝑥 ∗ 𝑤)(𝑡) 
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1D DATA & 

´Point-wise convolution output for 1D data 
 

 
 

 

𝑠 𝑡 = 𝑥 ∗ 𝑤 𝑡 = �𝑥 𝑡 𝑤(𝑡 − 𝑡)
𝑎

 

X1 x2 x7 x8 

s5 

  

w4 w3 
w-2 w-3 

Weight based on 
distance to t from a 

s8 

w7 
w6 

w-1 w-2 
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2D DATA 

´ Point-wise convolution output for 2D data 
 

𝑠 𝑡 = 𝐼 ∗ 𝐾 𝑖, 𝑗 =  ��𝐼 𝑚,𝑡 𝐾(𝑖 − 𝑚, 𝑗 − 𝑡)
𝑛𝑚

 

I11 I12 I13 

I21 I22 I23 

I31 I32 I33 

K00 

I: input 

K: kernel 

S11= 
I11xK00+ 
I12xK0-1+ 
I21xK-10+ 
I22xK-1-1 

S12= 
I11xK01+ 
I12xK00+ 
I21xK-11+ 
I22xK-10 

S21= 
I11xK10+ 
I12xK1-1+ 
I21xK00+ 
I22xK0-1 

S22= 
I11xK11+ 
I12xK10+ 
I21xK01+ 
I22xK00 

K-1-1 K-10 K-11 

K0-1 K01 

K1-1 K10 K11 

∗ 
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2D DATA 

´ Convolution is commutative 
 

𝑠 𝑡 = 𝐾 ∗ 𝐼 𝑖, 𝑗 = ��𝐼 𝑖 −𝑚, 𝑗 − 𝑡 𝐾(𝑚,𝑡)
𝑛𝑚

 

S11= 
I00xK11+ 
I0-1xK12+ 
I-10xK21+ 
I-1-1xK22 

S12= 
I01xK11+ 
I00xK12+ 
I-11xK21+ 
I-10xK22 

S21= 
I10xK11+ 
I1-1xK12+ 
I00xK21+ 
I0-1xK22 

S22= 
I11xK11+ 
I10xK12+ 
I01xK21+ 
I00xK22 

I: input K: kernel 

I-1-1 I-10 I-11 K11 

I0-1 I00 I01 K21 

I1-1 I10 I11 

K12 

K22 

∗ 
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EXTENDED DEFINITION OF CONVOLUTION 

´Cross correlation function (without flipping)  
 
 
 
 
 
 
 
 
 
 

´ Note: Many machine learning libraries implement cross-
correlation but call it convolution. 

 
 
 

𝑠 𝑡 = 𝐾 ∗ 𝐼 𝑖, 𝑗 = ��𝐼 𝑖 + 𝑚, 𝑗 + 𝑡 𝐾(𝑚,𝑡)
𝑛𝑚

 

2D Kernel 2D Input 

I11 I12 I13 

I21 I22 I23 

I31 I32 I33 

S11= 
I11xK11+ 
I12xK12+ 
I21xK21+ 
I22xK22 

S12= 
I12xK11+ 
I13xK12+ 
I22xK21+ 
I23xK21 

S21= 
I21xK11+ 
I22xK12+ 
I31xK21+ 
I32xK22 

S22= 
I22xK11+ 
I23xK12+ 
I32xK21+ 
I33xK22 

K11 

K21 

K12 

K22 

∗ 
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Figure 9.1 of Goodfellow et al. 2016: 

Cross correlation 
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MOTIVATION 

´Convolution enable the following:  
«Sparse interactions, 
«Parameter sharing 
«Equivariant representations. 

´Provides a means for working with inputs of variable 
size. 
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SPARSE INTERACTIONS 

´ Convolutional networks typically have sparse interactions 
´ Q: How can it be done?  
´ A: Making the kernel smaller than the input. 

 
 
 
 
 

 
´ Q: Why is it beneficial? 
´ A:1) fewer parameters: reduces the memory requirements 

and improves its statistical efficiency.  
    2) computing the output requires fewer operations. 

CNN traditional NN 
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SPARSE INTERACTIONS 

´ Q: Would sparsity cause reduction on performance? 
´ A: Not really, since we have deep layers. Even though direct 

connections in a convolutional net are very sparse, units in 
the deeper layers can be indirectly connected to all or most 
of the input image. 

BIML 2017 Feb. 16, 2017 



PARAMETER SHARING 

´Parameter sharing is the uses of same parameter 
for more than one function in a model.  
«Note: In a traditional NN, each element of the weight 

matrix is used exactly once when computing the output of 
a layer. 

´AKA tied weights:  
«Value of the weight applied to one input is tied to the value 

of a weight applied in other location in the CNN 
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PARAMETER SHARING 

´ Q: How is it beneficial?  
´ A: Reduce the storage requirements of the model to k parameters. 
        
´ Q: Does it decrease runtime of forward  propagation? 
´ A: No, sill O(k x n) 

CNN traditional NN 
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EQUIVARIANT REPRESENTATIONS 

´ In case of convolution, the particular form of parameter 
sharing causes the layer to have a property called 
equivariance to translation 
«EX> shifting righ/left or up/down the input 2D image does 

not change the output of CNN 
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EQUIVARIANT REPRESENTATIONS 

´Q: Do we always want equivariance to translation? 
´A: No, we may want to learn location specific 

patterns.  
 

´Q: Can convolution also allow equivalence to other 
types of transformations like scale  
and rotation? 

´A: No, but pooling can help.  
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COMPONENT 2: POOLING 

components of a 
typical 
convolutional 
neural network 
layer. 
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POOLING 

´ Pooling function: replaces the output of the network at a 
certain location with a summary statistic of the nearby 
outputs 

´ Types of pooling 
«Max pooling 
«Average pooling 
«L2 norm  
«Weighted average  
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POOLING BENEFITS 

´ Representation becomes approximately invariant to small translations 
of the input. 

´ “Invariance to local translation can be a very useful property if we 
care more about whether some feature is present than exactly where 
it is.”  

max pooling example:  

Input shifted to the right by one pixel Original input 
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POOLING WITH DOWN-SAMPLING 

Example of max-pooling with a pool width of 
three and a stride between pools of two. 

´ Pooling is needed for down-sampling 
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EXAMPLE OF LEARNED INVARIANCES 

three filters 
learned in 
the detector 
units 

Input 1 Input 2 

CNN with three filters are intended to detect a hand-written 5. 

max pooling unit 
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INFINITELY STRONG PRIOR 

´ Convolution and Pooling acts as a infinitely strong prior 
´ Infinitely strong prior places zero probability on some 

parameters and says that these parameter values are 
completely forbidden 
« In another word, these parameters don’t need to be learned.  

´ Like any strong priors Convolution and pooling can cause 
underfitting.  

´ We should only compare convolutional models to other 
convolutional models in benchmarks of statistical learning 
performance. 
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PART 2.2: CONVOLUTION  
NEURAL NETWORK - PRACTICE 
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I13 
I13 

VARIANTS OF THE BASIC  
CONVOLUTION FUNCTION 
´ Convolution functions used in practice differ slightly compared to 

convolution operation as it is usually understood in the 
mathematical literature. 
 

´ 1) The input is usually not just a grid of real values but grid of 
vector-valued observations. 
«Ex> Color image has red, green and blue intensity at each pixel 
(3-D tensors) 

I11 I12 I13 

I21 I22 I23 

I31 I32 I33 

Red 

Green 
Blue 
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VARIANTS OF THE BASIC  
CONVOLUTION FUNCTION 
´ Working example: colored 2D image   

« Assume 4-D kernel tensor K (4D) 
²Element Ki,l,m,n giving the connection strength between a unit in channel i of the 

output and a unit in channel l of the input, with an offset of m rows and n 
columns between the output unit and the input unit.  

« Assume input consists of observed data V (3D) 
²Element Vi,j,k giving the value of the input unit within channel i at row j and 

column k .  
« Assume output consists of Z with the same format as V (3D) 
« If Z is produced by convolving K across V without flipping K, then 

 
 

𝑍𝑖,𝑗,𝑘 = � 𝑉𝑙,𝑗+𝑚−1,𝑘+𝑛−1𝐾𝑖,𝑙,𝑚,𝑛
𝑙,𝑚,𝑛
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DOWNSAMPLING – STRIDE  

´ We may want to skip over some positions of the kernel in 
order to reduce the computational cost (at the expense of not 
extracting our features as finely).  

´ We can think of this as downsampling the output of the full 
convolution function 

´ We refer to s as the stride of this downsampled convolution 

𝑍𝑖,𝑗,𝑘 = 𝑐 K, V, 𝑠 𝑖,𝑗,𝑘 

= � [𝑉𝑙, 𝑗−1 ∗𝑠+𝑚, 𝑘−1 ∗𝑠+𝑛𝐾𝑖,𝑙,𝑚,𝑛]
𝑙,𝑚,𝑛
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Stride example  
S=2 
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ZERO-PADDING 

´ Valid convolution: 
«Extreme case in which no zero-padding is used 

whatsoever, and the convolution kernel is only allowed to 
visit positions where the entire kernel is contained entirely 
within the input  

´ Same convolution: 
«Just enough zero-padding is added to keep the size of the 

output equal to the size of the input 
´ Full convolution 

«Other extreme case where enough zeroes are added for 
every pixel to be visited k times in each direction, resulting 
an output image of width m + k − 1. 
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ZERO PADDING 

Valid convolution 

Same convolution 
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WHAT IF WE DON’T WANT TO CONVOLUTE? 

´ In some application, it’s more appropriate to not use 
convolution, but rather locally connected layers 

´ Q: How do we modify the model? 
´ A: Unshared convolution approach  
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UNSHARED CONVOLUTION  

´ Assume weight are in a 6-D tensor W 
«𝑤𝑖,𝑗,𝑘,𝑙,𝑚,𝑛: i, the output channel, j, the output row, k, the output 

column, l, the input channel, m, the row offset within the input, and 
n, the column offset within the input. 

´ Pro: Able to learn location sensitive filters. 
´ Con: Memory requirements increase only by a factor of 

the size of the entire output feature map. 

𝑍𝑖,𝑗,𝑘 = � 𝑉𝑙,𝑗+𝑚−1,𝑘+𝑛−1𝑤𝑖,𝑗,𝑘,𝑙,𝑚,𝑛
𝑙,𝑚,𝑛

 

Unshared convolution, aka locally connected layer, since it is 
similar operation to discrete convolution with a small kernel, but 
without sharing parameters across locations 
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Unshared convolution  
(locally connected layer) 

Convolution  
(parameter sharing) 

Fully connected 
(no parameter sharing) 

BIML 2017 Feb. 16, 2017 



TILED CONVOLUTION 

´ Tiled convolution learn a set of kernels that is rotated 
through as we move through space, rather than learning a 
separate set of weights at every spatial location as in locally 
connected layer.  
 

 
 
´ Pro:  

«It Offers a compromise between a convolutional layer and 
a locally connected layer. 

«Memory requirements for storing the parameters will incre
ase only by a factor of the size of this set of kernels 

𝑍𝑖,𝑗,𝑘 = � 𝑉𝑙,𝑗+𝑚−1,𝑘+𝑛−1𝐾𝑖,𝑙,𝑚,𝑛,𝑗𝑗𝑗+1,𝑘𝑗𝑗+1
𝑙,𝑚,𝑛
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Locally connected layers 

Tiled convolution 

Standard convolution 
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convolutional network 
with the first two output 
channels connected 
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COMPUTE THE GRADIENTS IN CNN 

´ 3 operations needed to compute the gradients in CNN  
«Convolution, 
«Backprop from output to weights, and 
«Backprop from output to inputs 

 
* Details omitted  
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CHOOSING POOLING METHODS 

´ No best answer here but:  
´ Some theoretical work gives guidance as to which kinds of pooling 

one should use in various situations (Boureau et al. 2010 ).  
´ It is also possible to dynamically pool features together, for example, 

by running a clustering algorithm on the locations of interesting 
features (Boureau et al., 2011).  This approach yields a different set of 
pooling regions for each image.  

´ Another approach is to learn a single pooling structure that is then 
applied to all images (Jia et al., 2012). 
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RANDOM OR UNSUPERVISED FEATURES 

´ Feature learning in CNN is very expensive  
«Every gradient step requires complete run of forward 

propagation and backward propagation  
 

´ Three ways to obtaining convolution kernels without 
supervised training. 
«Initialize them randomly  
«Design them by hand 
«Learn the kernels with an unsupervised criterion 

²Apply k-means clustering to small image patches, then 
use each learned centroid as a convolution kernel. 

²Greedy layer-wise pretraining (convolutional deep belief 
network) 
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GATHER MORE DATA OR  
RETUNE THE MODEL? 
´ It is often much better to gather more data than to improve 

the learning algorithm. But data can be expensive.  
´ Measure the training set performance.  

«Poor training set performance: the learning algorithm is not 
using the training data properly.  
²Try increasing the size of the model - more layers or 

more hidden units 
²Try improving the learning algorithm - tune the 

hyperparameters 
²If the two does not work, quality of the training data may 

be poor.  
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GATHER MORE DATA OR  
RETUNE THE MODEL? 

«Acceptable training set performance, then measure the 
performance of test set.  
²If test set performance is good enough – no more work 

to do. 
²If test set performance is bad (big gap between training 

and testing),  
¹Gathering more data - most effective solutions. 
¹Reduce the size of the model  by adjusting 

hyperparameters, e.g., weight decay coefficients, 
¹Adding regularization strategies such as dropout. 
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SELECTING HYPERPARAMETERS 

´ Choosing hyperparameters manually  
« Requires understanding what the hyperparameters do and how 

machine learning models achieve good generalization 
« Requires understanding of how the data behaves  

´ Choosing hyperparameters automatically 
« Computationally costly  
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CHOOSING HYPERPARAMETERS  
AUTOMATICALLY 

´ Grid search. 
´ Random Search 

« Random search finds 
good solutions faster 
than grid search 

´ Combination approach 
« Gird search then random 

search on selected 
range of values 

´ Model-Based 
optimization 
« Difficult  
«   

 

Grid search vs random search  
-  two hyperparameter case 
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PARAMETER INITIALIZATION 

´ Important to initialize all weights to small random values.  
´ Bias terms can be initialized to zero or to small positive 

values.  
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