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1. Deep Learning Basics



Benefits of DNN Learning

Classical Machine Learning Pipeline in Comp Bio
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Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.




Various Dimensions of Learning

0 Computationalism vs Connectionism
2 Feed Forward vs Recurrent Neural Network

0 Deep Neural Network vs Deep Generative Model
(Discriminative vs Generative Learning)

2 Deep vs Shallow
Q Supervised vs Unsupervised



Connectionism vs Computationalism
Two perspectives of cognition:

Computationalism Connectionism

a World is abstracted by
symbols forming specific
structures and information

a Aims at massively
parallel models of

is aggregated through this consisting of large number
structure. of simple and uniform

0 Most traditional Al (logic; processing elements.
deductive)

0 Focused in learning
(learning from data,;
Inductive)

a Artificial neural networks

a Focused on search and
representation in a state
space



Feed Forward vs Recurrent Neural Nets

Feed Forward Neural  Recurrent Neural

Networks Networks
0 Connections only inone @ Have directed cycles
direction (directed (feedback loops) with
acyclic graph) delays = have internal
state (like flip-flops), can

0 Implement functions,

have no internal state oscillate etc.

Q Interesting models of the
brain but more difficult to

understand.



Discriminative vs Generative Learning

Two approaches of learning models:

Discriminative Generative
a Directly model a Model class-conditional
posterior probabilities densities p(x|Cy) and priors
p(Cr|x) p(Cy)

then evaluate posterior
probabilities using Bayes’
theorem

D (€, |x) = px|C)p(Cy)

% p(X|C;)p(C)

[C. Bishop 04]



Discriminative vs Generative:
Function Modelled

Discriminative Generative
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Individual classes by estimating
pP(X, y) and then determining
p(y|x) via Bayes rule
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[C. Bishop 04]



Discriminative vs Generative
Example Machine Learning Methods

Discriminative

Qa Decision Trees

0 Boosting

O Linear Regressions

Q Support Vector Machines
(SVM)

0 Random Forests

a Conditional Random
Fields (CRF)

[C. Bishop 04]

Generative
a Nalve Bayes

a Hidden Markov Model
(HMM)

O Gaussian Mixture Models
(GMM)

0 Variational Bayes

o Markov Random Fields
(MRF)

a Latent Drichlet allocation



Generative vs. Discriminative:
Pros and Cons

Discriminative Generative
0 © Use flexibility of the model o © Relatively
In relevant regions of input straightforward to
space characterize invariances
- 0 © Can handle partially
0 © Very fast once trained abelled data

0 ® Interpolate between training o
examples, and hence can fail if - ?nl\éltOr?eeeld\g%rlablllty even

novel inputs are presented 0 @ Scale badly

0 @ They don’t easily handle a number of classes
composition a the number of invariant
Q e.g. faces can have glasses transformations
and/or moutaches and/or hats a slow on test data
a Sampling generally not a Can sample from model
possible

[C. Bishop 04]



Deep NN vs Deep Generative Model

Both exploits layered hierarchical architectures but are

different in their goals.

Discriminative - Generative -

Deep Neural network Deep Generative Models

(DNN) examples (DGM) examples:

a Multi-layer Perceptron a Deep Belief Net. (DBN)

a Convolution Neural Net. 2 Restricted Boltzmann
(CNN) Machines (RBM)

a Recurrent Neural Net. 0 Generative CNN

O Generative Adversarial Net.
(GAN)



Modified from Table 1 of [L. Deng and N. Jaitly. 2015]

Deep Neural Network

Deep Generative Model

Structure

Graphical info flow: bottom-up

Graphical info flow: top-down

Domain knowledge Hard Easy
Semi/unsupervised Harder Easier
Interpretation Harder Easier
Representation Distributed Local or Distributed
Inference/decode Easy Harder
Scalability/compute Easier Harder
Incorp. uncertainty Hard Easy

Empirical goal

Classification, feature learning,
etc.

Classification (via Bayes rule),
latent variable inference, etc.

Learning algorithm

Backpropagation (unchallenged)

Variational EM, MCMC-based,
belief propagation. etc

Evaluation

On a black-box score — end
performance

On almost every intermediate
quantity

Experiments

Massive, real data

Modest, often simulated data

Parameterization

Dense matrices

Sparse (often); Conditional PDFs

Making DNN models interpretable is an active ongoing research.




Montufar et a., NIPS’14

Why Deep?

A deep network has significantly greater representational
power than a shallow one.



Montufar et a., NIPS’14
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Deep Learning Models Categorized as
Supervised vs Unsupervised
a Supervised Learning Methods (Classification)

a Multi-layer perceptron
a Convolution neural network

0 Unsupervised Learning Methods (Representation
Learning)

Q
Q
Q

Restricted Boltzmann Machine
Deep Belief Nets (can be supervised)

Deep Bolzmann Machines

a Autoencoders

a Semi-supervised Learning Method
a Self-Taught Learning
a Generative Adversarial Networks



Basic Unit of DNN: Perceptron

Perceptron: directed model
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Learning a perceptron involves
choosing values for the weights w;



Supervised: Multi-Layer Perceptron

Layers are usually fully connected,;
numbers of hidden units typically chosen by hand

Output units a;
w;,

Hidden units a
W ;

Input units (I




Supervised: Convolution Neural Network
(CNN)

o Connectivity pattern inspired by organization visual cortex.

Q Individual cortical neurons respond to stimuli in a restricted
region of space known as the receptive field.

0 Receptive fields of neurons partially overlap forming tiles in
visual field.

0 Response of a neuron approximated by a convolution operation

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/Convolutional_neural_network



Basic Unit of DGM: Restricted Boltzmann
Machines

Restricted Boltzmann Machines (Harmonium):
Undirected probabilistic graphical models

A type of energy-based model
p(v,h) = 1/zexp(=£(v,h))
where E(v,h) = — b™w — c’h —v'Wh

and Z = )., . pexp{—E (v, h)

and b, ¢, and W are unconstrained, real-valued,
learnable parameters.

bipartite graph



Deep Learning Book

Unsupervised: RBM & DBN & DBM

Restricted Boltzmann Machine (RBM)

hybrid graph
directed +
undirected

Undirected
graph

Deep Belief Network (DBN) Deep Boltzmann Machine (DBM)

Deep, generative models



Unsupervised: Deep Belief Network (DBN)

0 Characteristics: train layer by layer maximizing
By paata En®p® n®)y) 108 pH I (RWD) or
Eyp,...10gp (v) if first layer
*NOTE: The first of the deep learning models (2006)

undirected top two layers
connections

directed connections between all
other layers; arrows pointed
toward the data




. i i additional
Classification via DBN

DBN may be used directly as a generative model
But to be used as classification additional steps are needed:

0 Take weights of DBN and used them to define MLP
A =5 (bW + T )
D =6 (bW 4+ DTy e2, .., m
a Train the MLP for classification (optional)
o Example of discriminative fine-tuning



Unsupervised: Deep Boltzmann Machines

a Model variables is parametrized by an energy function E
P(v,hD, ..., A1) =1/, 5 exp(—E(v, kD, ..., h1); 9))
where

E(v, ST OF 9) = —pTwWh@ 3L RA-D" WO

Undirected in every layer




DBM as Bipartite Graph




Unsupervised: Autoencoders




Goodfellow et al, 2014

Semi-supervised:Generative Adversarial
Networks (GAN)

min max V (D, G)
G D

V(Df G) — E:ﬂmjﬂdum (a) [ngD(I)] T [Ezmj};{z] [lﬂg(l — D(G(E))]

/ D real data | |
L~ pt'Lr.'Lh.'L{-r) sigmoid

1 g function
B Discriminator 1
s SBSARET: | Network
z ~ p.(z) | Generator D(z) 0
o Network o et
prior G(E) generated
e ] data

Slide from Mark Chang’s GAN tutorial



Recurrent Neural Network (RNN)

0 Ties the weights at each time step
0 Condition the neural network on all previous input
0 RAM requirement only scales with number of input

Vi

1 Vi Vi1

O W O
O O
> —
O O
O O

S —
Xt-1 Xt Xt+1

(0000| (0c0e| |ecoo]

O
e W
O
O




RNN: Hopfield Network

0 Earliest form of Recurrent Neural Network [devised
by John Hopfield in 1982]

binary threshold units [-1,1]



RNN: Long Short-Term Memory Nets
(LSTMSs)

Insensitivity to gap length
A advantage when there’s unknown size bound between important events

N

put gating g y y@ £n6t
it squashing g(I’lEtc) pul gare
/ 1H‘\
“l"c
net,

Figure from https://deeplearning4j.org/Istm.html



https://deeplearning4j.org/lstm.html

Random or Unsupervised Features

0 Feature learning in CNN Is very expensive

Q Every gradient step requires complete run of forward
propagation and backward propagation

a Three ways to obtaining convolution kernels without supervised
training.
a Initialize them randomly
a Design them by hand
Q Learn the kernels with an unsupervised criterion

a Apply k-means clustering to small image patches, then use e
ach learned centroid as a convolution kernel.

0 Greedy layer-wise pretraining (convolutional deep belief ne
twork)



Gather More Data or Retune the Model?

a It 1s often much better to gather more data than to
Improve the learning algorithm. But data can be
expensive.

0 Measure the training set performance.

a Poor training set performance: the learning algorithm
IS not using the training data properly.

aTry increasing the size of the model - more layers
or more hidden units

aTry improving the learning algorithm - tune the
hyperparameters

alf the two does not work, quality of the training
data may be poor.



Gather More Data or Retune the Model?

0 Acceptable training set performance, then measure the
performance of test set.

0 If test set performance Is good enough — no more
work to do.

0 If test set performance iIs bad (big gap between
training and testing),

aGathering more data - most effective solutions.

aReduce the size of the model by adjusting
hyperparameters, e.g., weight decay coefficients,

QAdding regularization strategies such as dropout.



Selecting Hyperparameters

0 Choosing hyperparameters manually

0 Requires understanding what the hyperparameters do
and how machine learning models achieve good
generalization

0 Requires understanding of how the data behaves
a2 Choosing hyperparameters automatically

0 Model-Based optimization
0 Computationally costly



Selecting Hyperparameters cont.

0 Grid search
0 Search Evenly of the para.
space
0 Random Search

a Finds good solutions faster
than grid search
a Combination approach

a Gird search then random Grid search vs random search

search on selected range of - two hyperparameter case
values




Parameter Initialization

0 Important to initialize all weights to small random
values.

0 Bias terms can be initialized to zero or to small positive
values.
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2. Interpretable Deep Learning Models

*Note: Many of the contents are extracted from a tutorial given in ICASSP
2017 by G. Montavon, W. Samek, K.-R. Muller



[ICASSP 2017 Tutorial]

Why Interpretable?

0 Verify that classifier works as expected

0 Esp. in areas where wrong decisions can be costly and dangero
us (autonomous car, medical decision support systems, etc)

a Improve classifier by finding out the cause of low accur
acy

a Allows for human intervention
a Learn from the learning machine
a Learn moves or rules we didn’t know about
a Advance In science
o Compliance to legislation
a EU’s “right to explanation”
a Retain human decision in order to assign responsibility



Interpretable (Explainable) Method

0 Because the doctors will not trust you unless you can
verify why the model came to that conclusion.

Omics feature

Suggested treatment of patient A is i
because the model detected/learned

Interpretable --- features in the patient.

Machine

Learning Suggested treatment of patient B is@
because the model detected/learned

BB features in the patient.

Q1: How can we
explain the results?



Demands for Interpretable Methods

0 EU’s Right to Explanation

EU citizens might get a ‘right to explanation’
about the decisions algorithms make

0 DARPA’s Explalnable Art|f|C|aI Intelligence (XAIl) progr
am 2017-2021 g 1S

DEFENSE ADVANCED
RESEARCH PROJECTS AGENCY A

Defense Advanced Research Projects Agency » Program Information

Explainable Artificial
Intelligence (XAl)

Mr. David Gunning



DEFENSE ADVANCED

RESEARCH PROJECTS AGENCY

DARPA XAl Project

. ' ”?
Task Why did you do that”

TOd a.y * Why not something
else?
. Machine Decision or « When do you
Tralnlng N Learning Learn_ed Recommendation succeed?
Data Process Function « When do you fail?
* When can | trust you?
User ° How do | correct an
error?
XAl Task ¢ 1understand why
* | understand why not
New - « | know when you
Training Machine | [Explainable|Explanation i succeed
Data Learning Model | Interface [© “;} * I know when you fal
Process i * | know when to trust

you
User .« know why you erred




Explainable Models

New Learning Techniques (today)
Approach
Neural Nets —

Create a suite of ¢ Graphical .~
machine learning e MO ="
teChnlqueS that Learning Bayesian E&Z;rgslse
produce more Belief Nets _
explainable models, - Rando
while maintaining a CRPe B/ Forests
high level of Stafistical  O%S MLN ‘ -
learning — { C||on
performance SVMs AN Mede X <

Deep Explanation

Modified deep learning
techniques to learn
explainable features

.l/ .l
i*l* i*i'
(g oo Fofe Jolo

Interpretable Models

Techniques to learn more
structured, interpretable,
causal models

\\\\\

N/

Explainability
(notional)

Prediction ‘ ccurac

A 4

Explainability

Model

A
Experiment

Model Induction
Techniques to infer an

explainable model from any

model as a black box



Interpretable vs Accurate Models

L_inear models VS Non-Linear models
¥ ] Y @ g
/.,;M z; - abitd
&
@
@ " x

Traditionally Interpretability and Complexity of the model was
thought to be anticorrelated.



Z. Lipton. 2016.

Measures of Interpretability

Q Interpretability as a means to engender trust

a Faith in a model’s performance, robustness, or to some other
property of the decisions it makes?

0 Low-level mechanistic understanding of our models?
0 Uncovers causal structure in data

0 Uncover patterns in data as a whole
a Uncover what part of the data is relevant to the result



[ICASSP 2017 Tutorial]

Dimension of Interpretability

Prediction

“Explain why a data has been classify in a
certain way f(x)?”

Model

“What pattern describes a
class according to the

Data model?”

“Which part of the data
are relevant or
predictive of the task?”




Goals of Interpretability

focus on mode/
A

1.1. Activation

1. Interpreting Maximization

Learned Models
1.2. Data Generation

2.1. Perturbation
2. Explaining
Decisions

2.2. Backpropagation

(Decomposition)

\ 4

focus on data



[ICASSP 2017 Tutorial]

From Model Analysis to Decision Analysis

model analysis > decision analysis

- Discriminative models - Generative models



Interpreting Learned Models

Interpreting Classes and Outputs

o Activation Maximization
Q: What is the representative of class A?
Q: What does high/low value of output neuron B mean?

0 Data Generation
Q: What did each of its neurons learn?



Montavon et al. ICASSP 2017 Tutorial 1.1. Activation

Learned Models

1.2. Data Generation

1.1. Activation Maximization

2. Explaining 2.1. Perturbation

Interpreting concepts predicted by a { > oecampon
deep neural net via activation
maximization

Input

pattern

deep neural [ log plwx) class probability
—
network > f(x) real-valued output

0 Example :
0 Creating class prototype: argmax,e, log p(w,|x)

0 Synthesizing extreme case: argmaxye, f (x)



[ICASSP 2017 Tutorial]

Improving Activation Maximization

a ldea: Force the features learned to match the data more
closely.

0 Now the optimization problem become

Finding the input
pattern that
maximizes class
probability.

Find the most likely
Input pattern for a
given class.



1.2. Data Generation

[Nguyen etal. 2016] 1. Interpreting q 1|\}I%a.><'io‘r(r:1tiizvz;at?:nn
1.2. Data Generation _
2. Explaining 2.1. Perturbation
Decisions

Problem: Activation maximization ( e
problem as finding a code y' such that:

y' = argmax @, (Gi(y")) - Ally'|

y
Code Image
b : Forward and backward passes
r L __._E-.['_-,.____:.,.I;,._...-_'-.{-_---'-r--...- = candle
.._TT-- - |7 l == banana
o uz | N 2 N oe3 N ca \ c5 .
A — == convertible
fc upconvolutional convolutional - - fcB
L J fce fc7
Deep genera[mr network |
(prior) DNN beirlg visualized

Deep generator network proposed by Nguyen et al. 2016



2. Explaining Decisions

0a Goal: Determine the relevance of each input feature for
a given decision, by assigning to these variables
relevance scores to each feature.

0 Important for Personalized Healthcare

a Two approaches:

Decisions

2. Explaining <‘ 2.1. Perturbation

2.2. Backpropagation
(Decomposition)




1.1. Activation
1. Interpreting Maximization
Learned Models

1.2. Data Generation

Perturbation Approaches

Decisions

2. Explaining @ 2.1. Perturbation

2.2. Backpropagation

a Make perturbation to input and observe the L]
difference in the output

0 @ Every time you make a perturbation output
needs to be recomputed

?
CGACTD ACAC C
Cc G T T A AC C
C GG T A AC C



1.1. Activation
1. Interpreting Maximization
Learned Models

1.2. Data Generation

Backpropagation methods

2.2. Backpropagation

2. Explaining 2.1. Perturbation
Decisions
(Decomposition)

Q Sensitivity analysis

0 Layer-wise relevance propagation (Deep Tylor)
Q DeepLIFT



[ICASSP 2017 Tutorial]
Explaining by Sensitivity Analysis

Given prediction function f (x4, x5, ..., x4) on d
dimensional inputdata x = x4, x5, ..., Xgq ),
Sensitivity analysis Is the measure of local variation of the
prediction function f along each input dimension
of 2
R; = ( |x x)

0x;

0 Easy to implement
0 Requires access to the gradient of the decision function

0 May not explain the prediction well



[ICASSP 2017 Tutorial]

Sensitivity Analysis

Input iImage sensitivity
I:. X iy s L]
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[ICASSP 2017 Tutorial]

Explaining by Decomposing

Decomposition methods decompose prediction value f(x) t
o0 relevance scores R; such that

Zi R = f(x1, ., Xg)

Decomposition explains the function value itself.



[ICASSP 2017 Tutorial]

Sensitivity Analysis in Decomposition View

a Decomposition: }.; R; = f(xq, ..., xg)

a Sensitivity Analysis:

R; = (a_f x=x)2

axi

Zi R; = | follz

0 Sensitivity analysis explains a variation of the
function.



Decomposition on Shallow Nets

a Taylor decomposition of function f (x4, ..., xg4)

of T
Xj — O
+Z Oxj lx= x X —I_M_(E.{_-)f

Ri

0 Can it be applied on Deep Learning?
0 Doesn’t work well on DNN
0 Also subjected to gradient noise



Deep Taylor Decomposition

Taylor

decomposition
(TD)

f(@).V],...

deep Taylor
decomposition
(DTD)

f(z)

[ICASSP 2017 Tutorial]
[Montavon et al. 2017]




[ICASSP 2017 Tutorial]

ayer-Wise Relevance Propagation (LRP)

step I: forward pass

(linear time) >
1 iyad
A Al gag A
a4 g g el glgglis
. By Taatgadsy © H
#iﬂlﬂﬁiﬂ ii iEE TRT igll ;
-< step 2: relevance propagation

also linear time!

Propagation rule:

R=Y ek a1
| I



[ICASSP 2017 Tutorial]

ImageNet Models sensitivity analysis

image classified LRP + engineered

as "frog" by g '. propagation rules (a;B,)

BVLC CaffeNet
deep Taylor LRP /

e
-

deep Taylor LRP

+ better model
(GoogleNet)

Adapted from Montavon et al. 2017 in

“Explaining NonLinear Classication
Decisions with Deep Taylor Decomposition”



Shrikumar et al 2017 CVPR

DeepLIFT

0 DeepLIFT explains the difference in output from some
‘reference’ output in terms of the difference of the input
from some ‘reference’ input.

0 The ‘reference’ input represents some default or “neutral’
Input that Is chosen according to what is appropriate for
the problem at hand

0 Activation difference propagated down to input

0 Capable to propagate relevance down even when the
gradient Is zero. (solves saturation problem)



Saturation problem illustrated

y = (i + i;) when (i; +i,) < 1
=1 when (i, +i,) >= 1

Saturation revisited

Y y=(i; +i,) when (i, +i;) < 1
=1 when (i; +i;) >=1

0 1 2 3
1. +1 When (i, +i;) >=1, @
1 2 gradientis 0
h l . .
><’f max({0, 1-1i,-1,)
0 1 2 -
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3. DL Applications in Bio-Healthcare



Benefits of DNN Learning Revisited

Classical Machine Learning Pipeline

Raw data Clean data

Feature
extraction

1. Reduced efforts
In data cleaning

Features
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2. Auto Representati
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Label

Layer 2 TSS

Intmn
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Results

Hidden layers
lextract features

in various

Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.
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resolution



Various DNN Applications

2 Genomics Applications
0 Regulatory Genomics
Q Protein Structure Prediction
0 Applications on High throughput Data

2 Healthcare Applications
0 ICU data analysis

0 EHR data analysis
0 Computational Drug Development



Early works of DNN in Alternative Splicing

_ Deep Feedforward NN

O
Ollo 8 Early works still utilize
P L tissue i | H
O3 8+ e selected (large size) features
Genmnic l185ue 1
Featuresq | : O O O_-) B tiggue i i Low-Madium-
O o O-+ L tiosus 3 High Code
O O — i O_'*H tissue j
O O O_'} H tissue j _|
A 5 O | LOJ\| O pecrease rissue Fully conngcted Feedforwgrd NN
index i . O (O-f> ¥o change - Difference (Bayesian Deep Learning)
T O—-} Increase Code
infl:xsjtissua O O Inputs COMPUTATIONAL Validation
: elemen MODEL OF SPLICING
O Reftencs DN‘B\.-\I?I_I \&:s S .. . RNAsSeg
Fig 1 of Leung et al. (2014) Bioinformatics 30(12) 121-129,/  sésences 5 5 5 ¢ wanigenss
wocd 2 B Protein
“ H . RNA-Si o knockdown
Deep learning of the tissue- e — (I
11 ” issues b e redictions inding
regulated splicing code ‘ e deta
Variant VARIANT SCORE Exploration
1393 features Qi:g%"efpmm L Precision medicine
eXtraCted from eaCh ] Ca_noer slements s Personal genomics
exon Of 5 dlffe re nt 1000 predetermlned glpr,:.anparllymuscmar Q %%//7 Whole genome analysis
tissue types features from CIWAS studies & | Large cohort study
yp candidate exon and QTL studies o - _ :
adjacent introns Splicing assays g Splicing levels Medical therapeutics

Fig 1 of Xiong et al. (2015) Science 347(6218):1254806



Giroup # Name Description Tvpe # of Fealures
0l short-seg- lmer 28
2 short-seg-2mer Frequency of nucleotide patterns of different lengths (1 to 3). real (0-1) 112
03 short-seq-3mer 320
ﬂ; 1::::::::15{ : A Desc I'II.'KH whether exons can hc translated without a stop codon n :
< = one of three possible reading frames. For example, C1A means the binary
0 translatable-C1AC2 exons of interest are C1 + A 1
o7 translatable-C1C2 1
08 mean-con-score- A2 1
05 mean-con-score-114 1
. Mean conservation score. real (0-1)
10 mean-con-score-1202 1
11 miean-con-score-C 11 1
2 log-length Log base 10 lengths of exons, real 5
13 log-length-ratio Log base 10 length ratios of exons. real 3
14 acceptor-site-strength - . 2
— Strength of acceptor and donor sites. real
. . 15 donor-site-strength 2
Featu re | IStI n g 16 frameshifi-exonA Whether exon A introduces frame shift. binary 1
17 ma-sec-struct BEMA secondary structures, real (0-1) 32
[E] Smer-motif-down 54
[E] fsmer-motif-down 76
20 Tmer-motif-down Counts of motif clusters of different lengths (5 to 7) weighted by ceal 2
21 Smer-motif-up conservation upstream and downstream from alternative exon. 49
Leu ng eta l . (2014) 2 fimer-motif-up 78
. . . 3 = L il
Bioinformatics 30(12) S mermoltup =
12 1_129 25 ese-ess-L] Counts of exonic splicing enhancers and silencers. real 4
26 ese-ess-02 4
27 pssm-5C35 PESM scores of 3035 sphicing regulator proteimn. 5
28 pasm-ASE-5F2 PSSM scores of ASF/SF2 splicing regulator protein. real 5
29 pssm-5Rpdl PS5M scores of SEpd0 splicing regulator protein, 10
El] nucleosome-position Mucleosome positioning. real 4
3l PFTB Phosphotyrosine-binding domain. real 50
2 Mova-counts Counts of Nova motif. integer 27
33 Mova-cluster Mova cluster score. real 8
34 T-nch 24
33 ("f"’h Counts of motif with and without weighting by conservation, real L
El] U-rich 16
37 Gill-rich 32
EL] Fox 24
39 (uak ]
40 SC35 22
41 SEm 160 11
2 SRrp2030/ 3840055075 17
43 CELF-hke 2
44 CUGEP 16
45 MBEML . . . 24
35 TRAZ-alpha Counts of motif with and wathout weighting by conservation. real o
47 TRAZ-beta 22
44 hnENP-A 14
449 hnENP-H 22
S0 hnBMNP-(; 22
51 BGH 22
52 ASF/5F2 11
53 Sugnet 2
54 alt-Alr-pos Position of the alternative AG and GT position. integer 2
55 Alu-Al2 Counts of ALL repeats. nteger 12

1 and 2 denote the flanking constitutive exons ; A denotes the aliermative exon ; I/ denotes the intron between CF and A ; 12 denotes the intron
between 4 and 2



DNA/RNA Sequence Analysis with Deep
CNN

Convolution step in Deep CNN resembles traditional
sequence “windowing” scheme
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Angermueller et al. (2016) Molecular Systems Biology, (12), 878.



DeepSEA: CNN-based noncoding

variant effect prediction

GOAL: Identifying functional effects of

noncoding variants
DeepSEA CNN structure

Output:
simultaneously ~ DNase | sensitivity TF binding Histone marks
predicted weer Q@O0 @@0 000
profile Allele A OOOOOOO ()OOO
Predict t

Training data: ‘ Train (

ENCODE, mmsy- | Deep convolutional network

Roadmap Epigenomics | -« (DeepSEA)

chromatin profiles

Input t

Input:

genomic sequences .« GCGTGEGETACGCTTATTCGTCARAGCTTTAGCGT. o .
.. .GCGTGGGTACGCTTAATCGTCAAGCTTTAGCGT. . .

1 kbp

Variant position

Innovative points:
1. Use long seq. 1kbp
2. multitask architecture

-> multiple output variables
919 chromatin features (125 DNase

features, 690 TF features, 104
histone features)

Zhou, J., & Troyanskaya, O. G. (2015). Nature Methods, 12(10), 931-4.



DanQ: Quantifying the Function of DNA

a Motivation: Over 98% of the human g
enome is non-coding and 93% of dise
ase-associated variants lie in non-codi
ng regions.

Q Proposed: DanQ, hybrid convolutiona
| and bi-directional long short-term m
emory recurrent neural network predi

cting non-coding function. T T T
o Data: T

a Input: GRCh37 reference genome segme i
nted into non-overlapping 200-bp bins. ﬂ' ICT'

o Labels: Intersecting 919 ChlIP-seq and D B
Nase-seq peak sets from uniformly proces

sed ENCODE and Roadmap Epigenomic
s data

Recurrent Dense Multi-task c

Max pooling

T

—

Convolution

One hot coding

[
ACACCTCACTCATTCTTATCTCTT

Daniel Quang and Xiaohui Xie. 2016. DanQ: A hybrid convolutional and recurrent deep neural network for quantifying
the function of DNA sequences. Nucleic Acids Research 44, 11.



DanQ vs DeepSEA

GM12878 EBF1 H1-hESC SIX5
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Basset: CNN-based Accessible

Genome Analysis

One Hot Code Sequence

ATTCCCGTAATCTACGATTAAGTCACAACCAAACCATGGATTACGGTCTGCGTTGGAATCAGGGCCGTGC
] - _E = mm . m ==
Y - m [ ™ ™ _—

-
o

l

Convolution Layers

-.
e T e
Tkt
Paca’
il Convolve
Uk = filters
Jokrel.
ot s
| _ |
By = g o Ry g S BT
RelLU
|
Bl Ll L ML L L M T Ly Max
— pool
Fully Connected Layer
- Linear
Em transformation
RelLU
Multi-task Prediction
Linear
transformation
BN S U VR RO P w Sigmoid

I [ Prediction
| BARUER FARIR RADIA | Actual

1. convert the sequence to a
“one hot code” representation

2. scanning weight matrices
across the input matrix to
produce an output matrix with
a row for every convolution
filter and a column for every
position in the input

3. linear transformation of the
input vector and apply a ReLU.

4. linear transformation to a
vector of 164 elements that
represents the target cells

Kelley et al. (2016). Genome Research, 26(7), 990-999



DeepBind: Protein—Nucleic acid
Binding Site Prediction

DeepBind is a CNN based supervised learning where
Input: segments of sequences and
labels (output): experimentally determined binding score (ex. ChiP-seq peaks)

f(s) = nety, (pcml (rectb(mnvw(s))))

X = L{]l"l‘l.-’w(‘s) . Threshold of —
oM Y = rectify,(X) each motif z max_pool(Y)
detector k Z, = max(Y, ., ... Y ).
Xig = ZZ SixjaMicja Y = max(0,X;, — by). k (P k)
j=11i=1
Motif scans T _dires Q.

padded sequence S o, ?é%

o ey By |

[ f

Motif detector M, L Thresholds Weights
Current modet i '
parameters | : ’ y
Farameatar 7 L
updates . \
Update parameter by stochastic gradient descent Welghted.ﬁnear
combination of pooled
features

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831-838.



Motif Extraction capability of DEEPBIND

The trained motif detector M, and visualization with sequence logo

Technology

__'1‘ PRDOMA1 EEBF1 MNR44A2 ZC3AH10
ChiF ChiF COMPILED PEBM
Known
motif AANYT a1 T YAV ' Tc ¢l .aAWL
[ =ELEx ChiE SELEX ChIE "SELEX PEM
DeepBind / T T T T TCCE ;rcvc. . T C
motifs RIS | SR S o 2l hm T
*ChiP-seq ]l TCEG T
unrelated Za XL T =l £ JELE | =2 - TE =n I Tc CC
motif(s) T * b *
"HT-SELE:‘: A ._Th__l_ I i r ””TC . i;cq;:r;- = B ._,-.h.-‘r-C Wi, C c
artifact * :

Generating sequence logo to find motifs

1. Feed all sequences from the test set through the convolutional and rectification
stages of the DeepBind model,

2. Align all the sequences that passed the activation threshold for at least one
position i.

3. Generate a position frequency matrix (PFM) and transform it into a sequence
logo.

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831-838.



RNN for variable length Seq. Input

a Recurrent Neural Network
0 Able to work with sequence input of variable length

0 Capture long range interactions within the input sequences and acros
S outputs.

a Difficult to work with and train

o
O ﬂI—I ﬂl‘ 0!+1
A r' s A
V W VT 1% V
5 5
SCO > Y 0L 0O—— O
A Unfold W oy Wy W
U U U U

i1 t t+1
A recurrent neural network and the unfolding in time of the

computation involved in its forward computation. (fig 5 of
LeCun et al. 2015 Nature)

0 Not many success here



Protein Structure Prediction

0 Protein structure prediction methods tend to apply uns
upervised method or combination of NN methods

0 Types of unsupervised DNN methods:
Q Restricted Boltzmann Machines (RBM)
0 Deep Belief Networks

o Combination methods
0 Deep Conditional Neural Fields



Stacking RBM in Protein Fold Recognition

Input Features (pairwise similarity scores between two proteins)

.4

Hidden nodes

Hidden nodes

Hidden nodes

Classification node [0,1]
(in the same fold or not) '

Jo et al. (2015). Scientific Reports, 5, 17573.

84 features from five types
of sequence alignment
and/or protein structure
prediction tools

Layer by layer learning
with restricted Boltzmann
machine (RBM).

Same fold or not



DEEPCNF: Secondary Structure
Prediction

The architecture of Deep Convolutional Neural Field ¢ 4 window size of 11:

average length of an alpha helix is
Xi the associated input around eleven residues and that of a
features of residue i. beta strand is around six

Input features

1st layer
5-7 |ayer (Bottom layer)
CNN
1 2nd layer
=1 3rdlayer -~

_ 8,5 _ | (b javer, ‘ conditional random

T Hidden layegs field (CRF) with U and
D Ba O » DaOE Outputlabels |  parameters.

Calculates conditional probability of
SS labels on input features

Wang et al. (2016) Scientific Reports, 6(January), 18962.



Circadian Rhythms

GOAL: inferring whether a given genes oscillate in circadian fashion or not and
inferring the time at which a set of measurements was taken

(a)

-1
=

o 00 10
1.0 00 1.0

% 8

VAREL}E

v, ook
s

BIO_CYCLE: estimate which signais are RIO CTLOCK  Tha antnnte are
periodic in high-throughput circadian BIO_CLOCK: estimate the time at
experiments, producing estimates of which a particular single-time-point
amplitudes, periods, phases, as well as transcriptomic experiment was
several statistical significance measures. carried

DATA: data sampled over 24 and 48h

Agostinelli, et al. (2016). Bioinformatics, 32(12), i8-il7.



Cellular Image Analysis

Cellular Image Analysis
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1]

=]
o - o - o - S - 0.01 Cytoplasm
S —> S§—> & —> Sm—> 2 > Sm—>EEL >

7]
= - = - = - 0w

']

3 0.01 Vacuole

™ ~P = =

)
#

.
L4 n"‘ n‘*
! r r
I i I I
\ [ ' '

Fig 3 of Angermueller et al. (2016) Molecular Systems Biology, (12), 878.



Predicting Properties of Drugs

0 Input: transcriptional response data sets (transcriptional p
rofile)

0 Goal: classify various drugs to therapeutic categories

1 L2 [ } L4 LS
X " Y. A :
\II. v \ 1 | - Centrad Nervous System
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o ¥ e . * g
therapeutic R W (o |
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input layers of 977 and 271 neural nodes,

A. Aliper, et al. 2016. Deep learning applications for predicting pharmacological properties of drugs and drug
repurposing using transcriptomic data. Molecular Pharmaceutics 13, 7.



Deep Patient: Unsupervised Prognostic
Prediction based on EHR . b e

— Clinical Notes
- Diagnoses
. ital e
a Feature learning: i

Demography

hree-| k of IS “
0 three-layer stack of denoising
au to e n CO d e rS Medications ~ Diagnoses  Procedures .. Lab Tests Patients
Clinical Descriptors @ A

0 Data: EHRs of

0 about 700,000 patients from the
Mount Sinal data warehouse.

Q evaluation using 76,214 test
patients comprising 78 diseases
from diverse clinical domains
and temporal windows & C

Deep Patient Dataset

Unsupervised Deep Feature Learning

Hidden Layers Output

- - . Patients -+ Features
Q Prediction: random forest i
I - f - __Drug Targeﬁng_ ) _a
C aSS I I er /- //Persanaﬁzed Patient Similarity Disease \\.
\'\\ Prescription Clinical Trial Prediction -
Recruitment —

R. Miotto et al. 2016. Deep Patient: An Unsupervised Representation to Predict the Future of Patients
from the Electronic Health Records. Scientific reports 6, April.



Raw Patient Dataset

Climical Descriptors

Layer 1 Layer 2 Layer N Deep Patient Dataset
fput  Hidden  Output ) Iput  Hidden  Output i Input  Hidden  Outgot +— Fentures
Layer Patients at Layer Patients at Layer Patients at foq e

Layer 1 Layer N -1 Layer N

Figure 2. Diagram of the unsupervised deep feature learning pipeline to transform a raw dataset into the
deep patient representation through multiple layers of neural networks. Each layer of the neural network is
trained to produce a higher-level representation from the result of the previous layer.

Disease classification results Disease classification experiment

BawEeat 0.659 0.805 01,084 Diabetes mellitus with complications 0.794 0.861 0.907
PCA 0.696 0.879 0.104 Cancer of rectum and anus 0.863 0.821 0.887
CMM 0.632 0,891 0.072 Cancer of liver and intrahepatic bile duct 0.830 0.867 0.886
K-Means 0.671 0.887 0,093 Regional enteritis and ulcerative colitis 0.814 0.843 0.870
ICA 0.695 0.882 0.101

DeepPatient 0.77% 0.929° 0.181°




[Lanchantin et al 2016]

Deep Motif Dashboard

0 Goal: Motif visualization of Transcription Factor
binding prediction

a Models Used: CNN, RNN, CNN-RNN

0 Visualization: Saliency Maps, Temporal Output
Scores, Class Optimization.

GATAL
JASPAR Motifs | Forward: _AUATAA: Backward: _CTTATC] |
CNN Positive Class Maximization _c-.fT:TE%L_
RMNM Positive Class Maximization 11.-;-..1 e TTescle ecce.. - ——
CNN-RNN Positive Class Maximization 1T:Tc| N U o Sy IC',lT” T Moo o .
Positive Test Sequence COANGANGGEAGS SCTCAGGRGCAGCTCAGHCECAGCTCAGACEACEC000CCECCTCOCTCCCOQTCACATAA CTRGCTETACCACETGA00A
CNN Saliency (0.90) l
RMNN Saliency (0.96) I
CNN-RNN Saliency (0.99) I I
Positive Test Sequence 0 6TV (Y T et (o N (TR i o o i | TR (R 06 S0 06 v W ()
RNMN Forward Temporal Outputs u -
RNN Backward Temporal Outputs | [N - L
CNN-RNN Forward Temporal Outputs I

CNN-RNN Backward Temporal Outputs — |




Models and Visualization Strategies

Q Three Models
0 CNN
0 RNN
0 CNN-RNN (best performing)

a Visualization
a Measuring nucleotide importance with Saliency Maps.

0 Measuring critical sequence positions for the classifier using
Temporal Output Scores.

a Generating class-specific motif patterns with Class Optimiza
tion.



Models - Common settings

a Input: one-hot encoded matrix of raw sequence

a Output
a Output vector: linearly fed to a softmax function

a Learns the mapping from the hidden space to the output class |
abel space C € [+1,—1].
0 Probability indicating whether an input is a positive or a negative bindin
g site (binary classification task).
Q Training
0 Parameters: trained end-to-end by minimizing the negative log-
likelihood over the training set.
0 Loss function optimization stochastic gradient algorithm Adam

0 Mini-batch size of 256 sequences.
Q Regularization - Dropout.



Saliency Map of CNN

Problem: Given a sequence X, of length [X;|, and class ¢ € C, a DNN model
provides a score function S, (X;). We rank the nucleotides of X, based on
their influence on the score S_ (X,).
Challenge: Since S, (X) is a non-linear function of X, it is hard to directly
determine the influence of each nucleotide of X on Sc.
Solution: Approximated S, (X) as a linear function by computing the first-
order Taylor expansion

X <- a weighted sum of

Se(X)mw'X+b=> wizi+b  theinput nucleotides

1=1
where w is the derivative of S, with respect to the sequence variable X at the
point X, (w;, indicates the influence of that nucleotide position)

W= — = saliency map

Approach is similar to the methods used on images by Simonyan et al. 2013 and
Baehrens et al. 2010.



Saliency Map of CNN cont.

a Derivative Is simply one step of backpropagation in the DNN

a Getting derivative values of actual sequence:

0 Approach: pointwise multiplication of the saliency map with the one
-hot encoded sequence

Q Interpretation: the influence value of the character at each position o
n the output score.

a Visualize important each character (saliency map):

a Approach: element-wise magnitude of the resulting derivative vector
regardless of derivative direction.

0 Interpretation: indicates which nucleotides need to be changed the le
ast in order to affect the class score the most.



Temporal Output Scores for RNN

a Description:

0 Visualize the output scores at each timestep (position) of a sequ
ence.

a Assumption:
a An imaginary time direction running from left to right
0 Each position in the sequence is a timestep

a Determine the TOS

0 The input series is constructed by using subsequences of an inp
ut X running along the imaginary time coordinate, where the su
bsequences start from just the first nucleotide (position), and en
ds with the entire sequence X.

a TOS is calculated for each subsequences and visualized



Class-Specific Visualization

0 Goal: Find the best sequence which maximizes the proba
bility of a positive TFBS, which we call class optimizatio
n.

a Optimize arg max S+ (X) + M| X3

where S, (X) Is the probability (or score) of an input sequence X (
matrix) being a positive TFBS computed by the softmax equation
of our trained DNN model for a specific TF.



Three Motif Extraction

For each of the three visualization methods

1. Saliency map:

0 From each positive test sequence, select the contiguous length
-9 subsequence that achieves the highest sum of contiguous le
ngth-9 saliency map values.

2. Temporal Output Scores:

QO For each positive test sequence, select the length-9 subsequen
ce that shows the strongest score change from negative to pos
Itive output score.

3. Class-Specific

0 For each different TF, directly use the class-optimized sequen
ce as a motif.



Results

a Training: 30,819 sequences (with an even positive/negati
ve split), and each sequence consists of 101 DNA-base ¢
haracters (A,C,G,T).

0 Testing: Every dataset has 1,000 sequences

Table 1: Variations of DNN Model Hyperparameters

Model Conv. C_ﬂnv. Conv. filter | Conv. Pool | LSTM | LSTM
Layers | Size (n,,;) | Sizes (k) Size () Layers | Size (d)
Small RNN N/A N/A N/A N/A 1 16
Medium RNN N/A N/A N/A N/A | 32
Large RNN N/A N/A N/A N/A 2 32
Small CNN 2 64 9,5 2 N/A N/A
Medium CNN 3 64 9.,5.3 2 N/A N/A
Large CNN 4 64 9,5,3,3 2 N/A N/A
Small CNN-RNN 1 64 5 N/A 2 32
Medium CNN-RNN | 1 128 9 N/A ] 32
Large CNN-RNN 2 128 9.5 2 1 32




Results

Table 2: Mean AUC scores on the TFBS classification task

Model Mean AUC | Median AUC | STDEV
MEME-ChIP [16] 0.834 0.868 0.127
DeepBind [2] (CNN) | 0.903 0.931 0.091
Small RNN 0.860 0.881 106
Med RNN 0.876 0.905 0.116
Large RNN 0.808 0.860 0.175
Small CNN 0.896 0.918 0.098
Med CNN 0.902 0.922 0.085
Large CNN 0.880 0.890 0.093
Small CNN-RNN 0.917 0.943 0.079
Med CNN-RNN 0.925 0.947 0.073
Large CNN-RNN 0.918 0.944 0.081

Table 3: AUC pairwise t-test

Model Compariso p-value

RNN vs MEME 5.15E-05
CNN vs MEME 1.87E-19
CNN-RNN vs MEME | 4.84E-24
CNN vs RNN 5.08E-04
CNN-RNN vs RNN 7.99E-10
CNN-RNN vs CNN 4.79E-22
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