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1. Deep Learning Basics 



Benefits of DNN Learning 
Classical Machine Learning Pipeline in Comp Bio 

Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

Deep Learning in Comp Bio. 

Reduced efforts in 
data cleaning 

Auto Representation 
Learning 

Hidden layers 
extract 

features in 
various 

resolution 



Various Dimensions of Learning 

 Computationalism vs Connectionism  
 Feed Forward vs Recurrent Neural Network  
 Deep Neural Network vs Deep Generative Model

(Discriminative vs Generative Learning)  
 Deep vs Shallow 
 Supervised vs Unsupervised 



Connectionism vs Computationalism  

Computationalism  
 World is abstracted by 

symbols forming specific 
structures and information 
is aggregated through this 
structure.  

 Most traditional AI (logic; 
deductive) 

 Focused on search and 
representation in a state 
space  

Connectionism 
 Aims at massively 

parallel models of 
consisting of large number 
of simple and uniform 
processing elements.  

 Focused in learning 
(learning from data; 
inductive)  

 Artificial neural networks  
 

Two perspectives of cognition:  



Feed Forward vs Recurrent Neural Nets 

Feed Forward Neural 
Networks 
 Connections only in one 

direction (directed 
acyclic graph)  

 Implement functions, 
have no internal state 
 

Recurrent Neural 
Networks 
 Have directed cycles 

(feedback loops) with 
delays ⇒ have internal 
state (like flip-flops), can 
oscillate etc. 

 Interesting models of the 
brain but more difficult to 
understand.  
 



Discriminative vs Generative Learning 

Generative  
 Model class-conditional 

densities 𝑝(𝐱|𝐶𝑘) and priors 
𝑝(𝐶𝑘) 
then evaluate posterior 
probabilities using Bayes’ 
theorem 

𝑝 𝐶𝑘 𝐱 =
𝑝 𝐱 𝐶𝑘 𝑝(𝐶𝑘)
∑ 𝑝 𝐱 𝐶𝑗 𝑝(𝐶𝑗)𝑗

 

Discriminative 
 Directly model 

posterior probabilities 
𝑝 𝐶𝑘 𝐱  

 
 

Two approaches of learning models:   

[C. Bishop 04] 



Discriminative vs Generative: 
Function Modelled 

[C. Bishop 04] 

Generative  

Model the distribution of 
individual classes by estimating 
p(x, y) and then determining 
p(y|x) via Bayes rule 

Discriminative 

Learns the (hard or soft) 
boundary  between classes 



Discriminative vs Generative 

Generative 
 Naïve Bayes 
 Hidden Markov Model 

(HMM)  
 Gaussian Mixture Models 

(GMM) 
 Variational Bayes 
 Markov Random Fields 

(MRF) 
 Latent Drichlet allocation   

Discriminative 
 Decision Trees 
 Boosting 
 Linear Regressions 
 Support Vector Machines 

(SVM) 
 Random Forests 
 Conditional Random 

Fields (CRF) 
 

Example Machine Learning Methods  

[C. Bishop 04] 



Generative vs. Discriminative:   
Pros and Cons 

Generative  
  Relatively 

straightforward to 
characterize invariances 

  Can handle partially 
labelled data 

  Model variability even 
if not needed  

  Scale badly  
 number of classes 
 the number of invariant 

transformations  
 slow on test data 

 Can sample from model 
 

Discriminative  
  Use flexibility of the model 

in relevant regions of input 
space 

  Very fast once trained 
  Interpolate between training 

examples, and hence can fail if 
novel inputs are presented 

  They don’t easily handle 
composition 
 e.g. faces can have glasses 

and/or moutaches and/or hats 
 Sampling generally not 

possible  
 [C. Bishop 04] 



Deep NN vs Deep Generative Model 

Discriminative -  
Deep Neural network 
(DNN) examples  
 Multi-layer Perceptron  
 Convolution Neural Net. 

(CNN) 
 Recurrent Neural Net. 

Generative -  
Deep Generative Models 
(DGM) examples:  
 Deep Belief Net. (DBN)  
 Restricted Boltzmann 

Machines (RBM) 
 Generative CNN 
 Generative Adversarial Net. 

(GAN)  

Both exploits layered hierarchical architectures but are 
different in their goals.   



Deep Neural Network Deep Generative Model 
Structure  Graphical info flow: bottom-up  Graphical info flow: top-down  
Domain knowledge  Hard  Easy 
Semi/unsupervised  Harder  Easier 
Interpretation   Harder  Easier 
Representation   Distributed  Local or Distributed 
Inference/decode   Easy Harder 
Scalability/compute  Easier Harder 
Incorp. uncertainty
   Hard Easy 

Empirical goal   Classification, feature learning, 
etc. 

Classification (via Bayes rule), 
latent variable inference, etc.  

Learning algorithm  Backpropagation (unchallenged) Variational EM, MCMC-based, 
belief propagation. etc  

Evaluation   On a black-box score – end 
performance   

On almost every intermediate 
quantity   

Experiments  Massive, real data   Modest, often simulated data  
Parameterization   Dense matrices   Sparse (often); Conditional PDFs  

Modified from Table 1 of [L. Deng and N. Jaitly. 2015]  

Making DNN models interpretable is an active ongoing research.  



Why Deep? 
Montufar et a., NIPS’14 

A deep network has significantly greater representational 
power than a shallow one.  



Power of Layers: Space folding 
Montufar et a., NIPS’14 



Deep Learning Models Categorized as  
Supervised vs Unsupervised 
 Supervised Learning Methods (Classification) 

 Multi-layer perceptron  
 Convolution neural network 

 Unsupervised Learning Methods (Representation 
Learning) 
 Restricted Boltzmann Machine 
 Deep Belief Nets (can be supervised)  
 Deep Bolzmann Machines 
 Autoencoders 

  Semi-supervised Learning Method 
 Self-Taught Learning 
 Generative Adversarial Networks 



Basic Unit of DNN: Perceptron 

Perceptron: directed model  

Learning a perceptron involves 
choosing values for the weights wi 

affine 
transformation  

 

Hidden Unit 
 



Supervised: Multi-Layer Perceptron 
Layers are usually fully connected; 
numbers of hidden units typically chosen by hand 



https://en.wikipedia.org/wiki/Convolutional_neural_network 

Supervised: Convolution Neural Network 
(CNN) 
 Connectivity pattern inspired by organization visual cortex.  

 Individual cortical neurons respond to stimuli in a restricted 
region of space known as the receptive field.  

 Receptive fields of neurons partially overlap forming tiles in 
visual field.  

 Response of a neuron approximated by a convolution operation 



Basic Unit of DGM: Restricted Boltzmann 
Machines 

bipartite graph 

Restricted Boltzmann Machines (Harmonium):  
Undirected probabilistic graphical models  
 

A type of energy-based model 

p(v,h) = 1 𝑍⁄ exp(−E(v,h))   

where E(v,h) = − 𝒃T𝒗 − 𝒄T𝒉 − 𝒗T𝑾𝒉 

and 𝑍 = ∑ ∑ exp {−𝐸(𝒗,𝒉)𝒉𝒗   
and  b, c , and W are unconstrained, real-valued, 
learnable parameters. 

𝑾
 



Unsupervised: RBM & DBN & DBM 
Deep Learning Book 

Restricted Boltzmann Machine (RBM) 

Stacked RBMs 

Disconnected visible units 

Disconnected hidden units 

Deep Belief Network (DBN) Deep Boltzmann Machine (DBM) 

bipartite 
graph 

hybrid graph 
directed + 
undirected 

Undirected 
graph 

Deep, generative models 



Unsupervised: Deep Belief Network (DBN) 
 Characteristics: train layer by layer maximizing 

𝐸𝑣~𝑝𝑑𝑑𝑑𝑑𝐸ℎ 𝑙 ~𝑝 𝑙 (ℎ 𝑙 |𝑣) log 𝑝 𝑙+1 (ℎ 𝑙 ) or  

𝐸𝑣~𝑝𝑑𝑑𝑑𝑑 log 𝑝 𝒗   if first layer 
*NOTE: The first of the deep learning models (2006)  

undirected top two layers 
connections  

directed connections between all 
other layers; arrows pointed 
toward the data 



Classification via DBN 
DBN may be used directly as a generative model 
But to be used as classification additional steps are needed:  
 
 Take weights of DBN and used them to define MLP 

ℎ 1 = σ (𝑏 1 + 𝒗T𝑾 1 ) 
ℎ 𝑙 = σ (𝑏 1 + 𝒗(𝑙−1)T𝑾 𝑙 ) ∀ 𝑙 ∈ 2, . . , .𝑚 

 Train the MLP for classification (optional) 
 Example of discriminative fine-tuning  

additional 



Unsupervised: Deep Boltzmann Machines 
 Model variables is parametrized by an energy function E 
𝑃 𝑣, ℎ 1 , … , ℎ 𝐿 = 1

𝑍(𝜃)� exp (−𝐸 𝑣, ℎ 1 , … , ℎ 𝐿 ;𝜃 )  
where  

𝐸 𝑣, ℎ 1 , … ,𝒉 𝐿 ;𝜽 = −𝑣𝑇𝑊 1 ℎ 1 − ∑ ℎ 𝑙−1 𝑇
𝑊 1 ℎ 𝑙𝐿

𝑙=2   

Undirected in every layer 



DBM as Bipartite Graph  



Unsupervised: Autoencoders  
 



Semi-supervised:Generative Adversarial 
Networks (GAN) 

 

Goodfellow et al, 2014 

 Slide from Mark Chang’s GAN tutorial 



Recurrent Neural Network (RNN) 
 Ties the weights at each time step  
 Condition the neural network on all previous input 
 RAM requirement only scales with number of input 



RNN: Hopfield Network 
 Earliest form of Recurrent Neural Network [devised 

by John Hopfield in 1982] 

 binary threshold units [-1,1] 



RNN: Long Short-Term Memory Nets 
(LSTMs) 

Figure from https://deeplearning4j.org/lstm.html  

insensitivity to gap length 
A advantage when there’s unknown size bound between important events   

https://deeplearning4j.org/lstm.html


Random or Unsupervised Features 
 Feature learning in CNN is very expensive  

 Every gradient step requires complete run of forward 
propagation and backward propagation  

 Three ways to obtaining convolution kernels without supervised 
training. 
 Initialize them randomly  
 Design them by hand 
 Learn the kernels with an unsupervised criterion 

Apply k-means clustering to small image patches, then use e
ach learned centroid as a convolution kernel. 

Greedy layer-wise pretraining (convolutional deep belief ne
twork) 



Gather More Data or Retune the Model? 
 It is often much better to gather more data than to 

improve the learning algorithm. But data can be 
expensive.  

 Measure the training set performance.  
 Poor training set performance: the learning algorithm 

is not using the training data properly.  
Try increasing the size of the model - more layers 

or more hidden units 
Try improving the learning algorithm - tune the 

hyperparameters 
If the two does not work, quality of the training 

data may be poor.  



Gather More Data or Retune the Model? 
 Acceptable training set performance, then measure the 

performance of test set.  
 If test set performance is good enough – no more 

work to do. 
 If test set performance is bad (big gap between 

training and testing),  
Gathering more data - most effective solutions. 
Reduce the size of the model  by adjusting 

hyperparameters, e.g., weight decay coefficients, 
Adding regularization strategies such as dropout. 

 



Selecting Hyperparameters 

 Choosing hyperparameters manually  
Requires understanding what the hyperparameters do 

and how machine learning models achieve good 
generalization 

Requires understanding of how the data behaves  
 Choosing hyperparameters automatically 

Model-Based optimization 
Computationally costly  



Selecting Hyperparameters cont. 
 Grid search 

 Search Evenly of the para. 
space  

 Random Search 
 Finds good solutions faster 

than grid search 
 Combination approach 

 Gird search then random 
search on selected range of 
values 

 
 

Grid search vs random search  
-  two hyperparameter case 



Parameter Initialization 
 Important to initialize all weights to small random 

values.  
 Bias terms can be initialized to zero or to small positive 

values.  
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2. Interpretable Deep Learning Models 
*Note: Many of the contents are extracted from a tutorial given in ICASSP 
2017 by G. Montavon, W. Samek, K.-R. Müller 



Why Interpretable? 
 Verify that classifier works as expected 

 Esp. in areas where wrong decisions can be costly and dangero
us (autonomous car, medical decision support systems, etc)  

 Improve classifier by finding out the cause of low accur
acy 
 Allows for human intervention  

 Learn from the learning machine 
 Learn moves or rules we didn’t know about 
 Advance in science 

 Compliance to legislation 
 EU’s “right to explanation” 
 Retain human decision in order to assign responsibility 

 

[ICASSP 2017 Tutorial] 



Interpretable (Explainable) Method 
 Because the doctors will not trust you unless you can 

verify why the model came to that conclusion.  
 

28/03/2017 KUCS Graduate Seminar 
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Omics feature 

Interpretable  
Machine 
Learning 

A 

B 

Suggested treatment of patient A is  
because  the model detected/learned  
                      features in the patient. 

Suggested treatment of patient B is C 
because  the model detected/learned  
                      features in the patient. 

Q1: How can we 
explain the results?  



Demands for Interpretable Methods 
 EU’s Right to Explanation 

 
 
 
 

 DARPA’s Explainable Artificial Intelligence (XAI) progr
am 2017-2021 

28/03/2017 KUCS Graduate Seminar 

54 



DARPA XAI Project 
28/03/2017 
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Machine 
Learning 
Process 

Training 
Data 

Learned 
Function 

Today • Why did you do that? 
• Why not something 

else? 
• When do you 

succeed? 
• When do you fail? 
• When can I trust you? 
• How do I correct an 

error? 

Decision or 
Recommendation 

Task 

User 

New 
Machine 
Learning 
Process 

Training 
Data 

Explainable 
Model 

XAI 
Explanation 

Interface 

• I understand why 
• I understand why not 
• I know when you 

succeed 
• I know when you fail 
• I know when to trust 

you 
• I know why you erred 

Task 

User 
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Explainable Models 
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Explainability 

Learning Techniques (today) Explainability 
(notional) 

Neural Nets 

Statistical 
Models 

Ensemble 
Methods 

Decision 
Trees 

Deep 
Learning 

SVMs 

AOGs 

Bayesian 
 Belief Nets 

Markov 
Models 

HBNs 

MLNs 

Model Induction 
Techniques to infer an 

explainable model from any 
model as a black box 

Deep Explanation 
Modified deep learning 

techniques to learn 
explainable features 

New  
Approach 

Create a suite of 
machine learning 
techniques that 
produce more 
explainable models, 
while maintaining a 
high level of 
learning 
performance  

SRL 

Interpretable Models 
Techniques to learn more 
structured, interpretable, 

causal models 

CRFs 

Random 
Forests 

Graphical 
Models 



Interpretable vs Accurate Models  

Linear models Non-Linear models vs  

Traditionally Interpretability and Complexity of the model was 
thought to be anticorrelated.   



Measures of Interpretability 
 Interpretability as a means to engender trust 

 Faith in a model’s performance, robustness, or to some other 
property of the decisions it makes? 

 Low-level mechanistic understanding of our models?  
 Uncovers causal structure in data 

 Uncover patterns in data as a whole 
 Uncover what part of the data is relevant to the result 

Z. Lipton. 2016. 



Dimension of Interpretability 

Prediction 
“Explain why a data has been classify in a 
certain way f(x)?” 

Model 
“What pattern describes a 
class according to the 
model?” Data 

“Which part of the data 
are relevant or 
predictive of the task?”  

[ICASSP 2017 Tutorial] 



Goals of Interpretability 

1. Interpreting 
Learned Models 

2. Explaining 
Decisions 

1.1. Activation 
Maximization 

2.1. Perturbation  

1.2. Data Generation 

2.2. Backpropagation 
(Decomposition)  

focus on data 

focus on model 



From Model Analysis to Decision Analysis 
[ICASSP 2017 Tutorial] 

- Discriminative models  - Generative models  



Interpreting Learned Models 
Interpreting Classes and Outputs   
 
 Activation Maximization          
    Q: What is the representative of class A?  
    Q: What does high/low value of output neuron B mean?  

 
   

 Data Generation  
    Q: What did each of its neurons learn?   

 



1.1. Activation Maximization 

 Example : 
Creating class prototype: 𝑎𝑎𝑎𝑚𝑎𝑥𝒙∈𝝌 log 𝑝 𝑤𝑐 𝒙  
 Synthesizing extreme case: 𝑎𝑎𝑎𝑚𝑎𝑥𝒙∈𝝌𝑓(𝒙)  

Montavon et al. ICASSP 2017 Tutorial 

Interpreting concepts predicted by a 
deep neural net via activation 
maximization 

1. Interpreting 
Learned Models 

2. Explaining 
Decisions 

1.1. Activation 
Maximization 

2.1. Perturbation  

1.2. Data Generation 

2.2. Backpropagation 
(Decomposition)  



Improving Activation Maximization 
 Idea: Force the features learned to match the data more 

closely. 
 Now the optimization problem become  

Finding the input 
pattern that 
maximizes class 
probability.  

Find the most likely 
input pattern for a 
given class. 

[ICASSP 2017 Tutorial] 



1.2. Data Generation 
[Nguyen et al. 2016]:  

Problem: Activation maximization 
problem as finding a code 𝒚𝑙  such that: 
 

Deep generator network proposed by Nguyen et al. 2016 

1. Interpreting 
Learned Models 

2. Explaining 
Decisions 

1.1. Activation 
Maximization 

2.1. Perturbation  

1.2. Data Generation 

2.2. Backpropagation 
(Decomposition)  

𝒚𝑙�  =  arg max
𝒚𝑙

Φℎ 𝐺𝑙 𝒚𝑙 − 𝜆 𝒚𝑙  



2. Explaining Decisions 
 Goal: Determine the relevance of each input feature for 

a given decision, by assigning to these variables 
relevance scores to each feature.  

 Important for Personalized Healthcare 
 

 Two approaches: 

2. Explaining 
Decisions 

2.1. Perturbation  

2.2. Backpropagation 
(Decomposition)  



Perturbation Approaches 
 Make perturbation to input and observe the 

difference in the output 
  Every time you make a perturbation output 

needs to be recomputed 
 

1. Interpreting 
Learned Models 

2. Explaining 
Decisions 

1.1. Activation 
Maximization 

2.1. Perturbation  

1.2. Data Generation 

2.2. Backpropagation 
(Decomposition)  

C    G    A    T     A    A   C     C   
C    G    T    T     A    A   C     C   
C    G    G    T     A    A   C     C   

? 



Backpropagation methods  
 Sensitivity analysis 
 Layer-wise relevance propagation (Deep Tylor) 
 DeepLIFT 

1. Interpreting 
Learned Models 

2. Explaining 
Decisions 

1.1. Activation 
Maximization 

2.1. Perturbation  

1.2. Data Generation 

2.2. Backpropagation 
(Decomposition)  

C    G    A    T     A    A   C     C   

R1  R2  R3   R4   R5  R6  R7  R8   

f(x) 



Explaining by Sensitivity Analysis 
Given prediction function 𝑓(𝑥1, 𝑥2, … , 𝑥𝑑) on d 
dimensional input data 𝒙 =     𝑥1, 𝑥2, … , 𝑥𝑑 ), 
Sensitivity analysis is the measure of local variation of the 
prediction function f along each input dimension 

𝑅𝑖 = 𝜕𝜕
𝜕𝑥𝑖

|𝑥=𝑥
2
  

 
 Easy to implement  

 Requires access to the gradient of the decision function 
 May not explain the prediction well   

[ICASSP 2017 Tutorial] 



Sensitivity Analysis 
 

[ICASSP 2017 Tutorial] 



Explaining by Decomposing 
Decomposition methods decompose prediction value f(x)  t
o relevance scores Ri such that 

� 𝑅𝑖 = 𝑓(𝑥1, … , 𝑥𝑑)
𝑖

 

 
Decomposition explains the function value itself. 
 

[ICASSP 2017 Tutorial] 



Sensitivity Analysis in Decomposition View 

 Decomposition: ∑ 𝑅𝑖 = 𝑓(𝑥1, … , 𝑥𝑑)𝑖  
 

 Sensitivity Analysis:  

𝑅𝑖 = 𝜕𝜕
𝜕𝑥𝑖

|𝑥=𝑥
2
  

 ∑ 𝑅𝑖 = 𝛻𝑥𝑓 2
𝑖  

 
 Sensitivity analysis explains a variation of the 

function.  
 

[ICASSP 2017 Tutorial] 



Decomposition on Shallow Nets 
 Taylor decomposition of function 𝑓(𝑥1, … , 𝑥𝑑) 

 
 
 
 
 

 Can it be applied on Deep Learning?   
Doesn’t work well on DNN 
Also subjected to gradient noise 



Deep Taylor Decomposition 
 

[ICASSP 2017 Tutorial] 

[Montavon et al. 2017] 



Layer-Wise Relevance Propagation (LRP) 
 

[ICASSP 2017 Tutorial] 



 

Adapted from Montavon et al. 2017 
“Explaining NonLinear Classication 
Decisions with Deep Taylor Decomposition” 

[ICASSP 2017 Tutorial] 

ImageNet Models 



DeepLIFT 
 DeepLIFT explains the difference in output from some 

‘reference’ output in terms of the difference of the input 
from some ‘reference’ input.  

 The ‘reference’ input represents some default or ‘neutral’ 
input that is chosen according to what is appropriate for 
the problem at hand   

 Activation difference propagated down to input 
 Capable to propagate relevance down even when the 

gradient is zero. (solves saturation problem)  

Shrikumar et al 2017 CVPR 
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3. DL Applications in Bio-Healthcare  



Benefits of DNN Learning Revisited 
Classical Machine Learning Pipeline 

Fig 1A,D from Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

Deep Learning Pipeline  

1. Reduced efforts 
in data cleaning 

2. Auto Representation 
Learning 

Hidden layers 
extract features 

in various 
resolution 



Various DNN Applications 

 Genomics Applications 
Regulatory Genomics 
 Protein Structure Prediction 
Applications on High throughput Data 

 Healthcare Applications 
 ICU data analysis  
EHR data analysis  
Computational Drug Development  

 



Early works of DNN in Alternative Splicing 

Fig 1 of Xiong et al. (2015) Science 347(6218):1254806 

Fig 1 of Leung et al. (2014) Bioinformatics 30(12) 121-129  

Fully connected Feedforward NN 
(Bayesian Deep Learning) 

Early works still utilize 
selected (large size) features 

“Deep learning of the tissue-
regulated splicing code” 

Deep Feedforward NN  

1393 features 
extracted from each 
exon of 5 different 

tissue types 

1000 predetermined 
features from 

candidate exon and 
adjacent introns 



Feature listing 

Leung et al. (2014) 
Bioinformatics 30(12)  
121-129  



DNA/RNA Sequence Analysis with  Deep 
CNN 

 

Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  

Convolution step in Deep CNN resembles traditional 
sequence “windowing” scheme  

Window 
size of 5 



DeepSEA: CNN-based noncoding 
variant effect prediction 

Zhou, J., & Troyanskaya, O. G. (2015). Nature Methods, 12(10), 931–4.  

Innovative points: 
1. Use long seq. 1kbp  
2. multitask architecture  
-> multiple output variables 

DeepSEA CNN structure 

DNase I sensitivity  
Output: 
simultaneously 
predicted 
chromatin-
profile 

1 kbp 

919 chromatin features (125 DNase 
features, 690 TF features, 104 
histone features) 

GOAL: Identifying functional effects of 
noncoding variants 



DanQ: Quantifying the Function of DNA 
 Motivation: Over 98% of the human g

enome is non-coding and 93% of dise
ase-associated variants lie in non-codi
ng regions. 

 Proposed: DanQ, hybrid convolutiona
l and bi-directional long short-term m
emory recurrent neural network predi
cting non-coding function.  

 Data: 
 Input: GRCh37 reference genome segme

nted into non-overlapping 200-bp bins.  
 Labels: Intersecting 919 ChIP-seq and D

Nase-seq peak sets from uniformly proces
sed ENCODE and Roadmap Epigenomic
s data 

Daniel Quang and Xiaohui Xie. 2016. DanQ: A hybrid convolutional and recurrent deep neural network for quantifying 
the function of DNA sequences. Nucleic Acids Research 44, 11.  



DanQ vs DeepSEA 
 



Basset: CNN-based Accessible  
Genome Analysis 

1. convert the sequence to a  
“one hot code” representation 

2. scanning weight matrices 
across the input matrix to 
produce an output matrix with 
a row for every convolution 
filter and a column for every 
position in the input 

3. linear transformation of the 
input vector and apply a ReLU. 

4. linear transformation to a 
vector of 164 elements that 
represents the target cells 

Kelley et al. (2016).  Genome Research, 26(7), 990–999 



DeepBind: Protein–Nucleic acid  
Binding Site Prediction 

DeepBind is a CNN based supervised learning where  
Input: segments of sequences and  
labels (output): experimentally determined binding score (ex. ChIP-seq peaks)  

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–838.  

Motif detector Mk 

padded sequence S 

Threshold of 
each motif 
detector k 

Weighted linear 
combination of pooled 
features 

Update parameter by stochastic gradient descent 



Motif Extraction capability of DEEPBIND 
The trained motif detector Mk and visualization with sequence logo    

Alipanahi et al (2015) Nature Biotechnology, 33(8), 831–838.  

Generating sequence logo to find motifs 
1. Feed all sequences from the test set through the convolutional and rectification 

stages of the DeepBind model,  
2. Align all the sequences that passed the activation threshold for at least one 

position i.  
3. Generate a position frequency matrix (PFM) and transform it into a sequence 

logo. 



RNN for variable length Seq. Input 
 Recurrent Neural Network 

 Able to work with sequence input of variable length 
 Capture long range interactions within the input sequences and acros

s outputs.  
 Difficult to work with and train 

 
 
 
 
 
 
 
 
 

 Not many success here 

A recurrent neural network and the unfolding in time of the 
computation involved in its forward computation. (fig 5 of 
LeCun et al. 2015 Nature) 



Protein Structure Prediction  
 Protein structure prediction methods tend to apply uns

upervised method or combination of NN methods 
 Types of unsupervised DNN methods:  

Restricted Boltzmann Machines (RBM) 
Deep Belief Networks  

 Combination methods 
Deep Conditional Neural Fields 

 



Stacking RBM in Protein Fold Recognition 

Same fold or not 

84 features from five types 
of sequence alignment 
and/or protein structure 
prediction tools 

Layer by layer learning 
with restricted Boltzmann 
machine (RBM). 

Jo et al. (2015). Scientific Reports, 5, 17573.  



DEEPCNF: Secondary Structure 
Prediction 

Wang et al. (2016) Scientific Reports, 6(January), 18962.  

Xi the associated input 
features of residue i.   

The architecture of Deep Convolutional Neural Field fixed window size of 11:   
average length of an alpha helix is 
around eleven residues and that of a 
beta strand is around six 

conditional random 
field (CRF) with U and 
T being the model 
parameters. 

5-7 layer 
CNN  

Calculates conditional probability of 
SS labels on input features 



Circadian Rhythms 

BIO_CYCLE: estimate which signals are 
periodic in high-throughput circadian 
experiments, producing estimates of 
amplitudes, periods, phases, as well as 
several statistical significance measures.  
DATA: data sampled over 24 and 48h 

GOAL: inferring whether a given genes oscillate in circadian fashion or not and 
inferring the time at which a set of measurements was taken 

BIO_CLOCK: estimate the time at 
which a particular single-time-point 
transcriptomic experiment was 
carried 

Agostinelli, et al. (2016). Bioinformatics, 32(12), i8–i17.  



Cellular Image Analysis  

Cellular Image Analysis  

Fig 3 of Angermueller et al. (2016) Molecular Systems Biology, (12), 878.  



Predicting Properties of Drugs 
 Input: transcriptional response data sets (transcriptional p

rofile) 
 Goal: classify various drugs to therapeutic categories 

A. Aliper, et al. 2016. Deep learning applications for predicting pharmacological properties of drugs and drug 
repurposing using transcriptomic data. Molecular Pharmaceutics 13, 7.  

input layers of 977 and 271 neural nodes, 



Deep Patient: Unsupervised Prognostic 
Prediction based on EHR 
 Feature learning:  

 three-layer stack of denoising 
autoencoders 

 Data: EHRs of  
 about 700,000 patients from the 

Mount Sinai data warehouse.  
 evaluation using 76,214 test 

patients comprising 78 diseases 
from diverse clinical domains 
and temporal windows 

 Prediction: random forest 
classifier 
 

R. Miotto et al. 2016. Deep Patient: An Unsupervised Representation to Predict the Future of Patients 
from the Electronic Health Records. Scientific reports 6, April.  



 

Disease classification results Disease classification experiment 



Deep Motif Dashboard 
 Goal: Motif visualization of Transcription Factor 

binding prediction 
 Models Used: CNN, RNN, CNN-RNN 
 Visualization: Saliency Maps, Temporal Output 

Scores, Class Optimization. 
 
 

[Lanchantin et al 2016] 



Models and Visualization Strategies 
 Three Models 

 CNN 
 RNN 
 CNN-RNN (best performing) 

 Visualization 
 Measuring nucleotide importance with Saliency Maps.  
 Measuring critical sequence positions for the classifier using 

Temporal Output Scores. 
 Generating class-specific motif patterns with Class Optimiza

tion. 



Models - Common settings 
 Input: one-hot encoded matrix of raw sequence 
 Output 

 Output vector: linearly fed to a softmax function  
 Learns the mapping from the hidden space to the output class l

abel space C ∈ [+1,−1]. 
 Probability indicating whether an input is a positive or a negative bindin

g site (binary classification task).  

 Training 
 Parameters: trained end-to-end by minimizing the negative log-

likelihood over the training set.  
 Loss function optimization stochastic gradient algorithm Adam 
 Mini-batch size of 256 sequences.  
 Regularization - Dropout. 

 



Saliency Map of CNN 

Approach is similar to the methods used on images by Simonyan et al. 2013 and 
Baehrens et al. 2010. 

Problem: Given a sequence X0 of length |X0|, and class c ∈ C, a DNN model 
provides a score function Sc (X0). We rank the nucleotides of X0 based on 
their influence on the score Sc (X0).  
Challenge: Since Sc (X) is a non-linear function of X, it is hard to directly 
determine the influence of each nucleotide of X on Sc. 
Solution: Approximated Sc (X) as a linear function by computing the first-
order Taylor expansion  
 
 
 
where w is the derivative of Sc with respect to the sequence variable X at the 
point X0 (wi, indicates the influence of that nucleotide position)  
 
 
 
 

<- a weighted sum of 
the input nucleotides 



Saliency Map of CNN cont. 
 Derivative is simply one step of backpropagation in the DNN 

 
 Getting derivative values of actual sequence:  

 Approach: pointwise multiplication of the saliency map with the one
-hot encoded sequence  

 Interpretation:  the influence value of the character at each position o
n the output score. 

 
 Visualize important each character (saliency map):  

 Approach: element-wise magnitude of the resulting derivative vector 
regardless of derivative direction.  

 Interpretation:  indicates which nucleotides need to be changed the le
ast in order to affect the class score the most.  

 



Temporal Output Scores for RNN 
 Description: 

 Visualize the output scores at each timestep (position) of a sequ
ence. 

 Assumption: 
  An imaginary time direction running from left to right 
 Each position in the sequence is a timestep 

 Determine the TOS 
 The input series is constructed by using subsequences of an inp

ut X running along the imaginary time coordinate, where the su
bsequences start from just the first nucleotide (position), and en
ds with the entire sequence X. 

 TOS is calculated for each subsequences and visualized 
 



Class-Specific Visualization 
 Goal: Find the best sequence which maximizes the proba

bility of a positive TFBS, which we call class optimizatio
n. 

 Optimize 
where S+(X) is the probability (or score) of an input sequence X (
matrix) being a positive TFBS computed by the softmax equation 
of our trained DNN model for a specific TF. 



Three Motif Extraction 
For each of the three visualization methods 
1. Saliency map:  

 From each positive test sequence, select the contiguous length
-9 subsequence that achieves the highest sum of contiguous le
ngth-9 saliency map values.  

2. Temporal Output Scores:   
 For each positive test sequence, select the length-9 subsequen

ce that shows the strongest score change from negative to pos
itive output score.  

3. Class-Specific  
 For each different TF, directly use the class-optimized sequen

ce as a motif. 



Results 
 Training: 30,819 sequences (with an even positive/negati

ve split), and each sequence consists of 101 DNA-base c
haracters (A,C,G,T).  

 Testing: Every dataset has 1,000 sequences 
 



Results 
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