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Interpretable ML Content Overview

Intrinsically Post-hoc Interpretable

Interpretable Models Methods
Model Model
1. Traditionally Agnostic  Specific

Interpretable Models
2. Explaining Models

5. Transparent Box 3. Explaining Outcome
Methods (TBM)

Lee Sael - SNU



BSS

Intrinsically Interpretable Post-hoc Methods
Model Model

1. Traditionally RS SIPECHTE
Interpretable 2. Explaining Models

3. Explaining Outcome

5. Transparent Box

Part 2: Interpretable ML Overview

= Traditional Intrinsically Interpretable Models

Most of the contents comes from

* “Interpretable Machine Learning A Guide for Making Black Box Models Explainable.”
by Christoph Molnar 2018.

* “Interpretable Machine Learning: The fuss, the concrete and the questions” B. Kim
& F. Doshi-Velez, Tutorial, ICML 2017

Lee Sael - SNU



@a%(\ @ [C. Molnar 2018]
Traditional Interpretable Models (TIM)

a Pros:
= Often easier to understand how the model works
= Often under express the complexity of the system

a Cons:
= Often has lower accuracy compared to other ML
= May not be the interpretability that you seek for

0 Examples
" Linear Models
= Decision Tree
= Decision Rules
= RuleSets

Note: Some people argue that there are no intrinsically interpretable models
Lee Sael - SNU
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Linear Models

0 Linear models learn linear (and therefore monotonic)

relationships between the features and the target.
Vi =Po+ Bixpy + -+ Bpxip + €, = BTx; + €
n

B=argminy (i~ B"x.)’

i=1

Given all other features stay the same.

* Numerical: Unit increase of x, increases the expectation
fory by By

* (Categorical: A change from x,’s reference level to the other
category increases the expectation for y by B,

* Interpretation of a weight can be unintuitive because it

depends on all other features

Lee Sael - SNU
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Interpretable Measures for Linear Models

d

Measuring the total variance of your target outcomes
explained by the model

" i.e. Adjusted R-square given p # of features, n # of instances,
correct labels y;, and estimated labels y;:

RZ=R?2——L __(1-R?)
noP- 1 SSE
R2=1— ?=1(yi _5]\1')2
n )2
i — ) SST

Measuring importance of a feature in linear regression
= i.e. T-statistics:

A

,B Feature weight

Py

A std (B)/\/ﬁ Standard error of feature weight

Lee Sael - SNU
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Effect Plot for Linear Model
Effects plot show how much the combination of a
weight and a numerical feature contributes to the

predictions. Feature Effect:e;; = wyx;
Explaining Model Explaining Single Predictions

D

Predicted value for instance: 1571
Average predicted value: 4504 Low effect com pare

Actual value: 1606 .
to mean accountlng

; -_I:Uf Large§t Pgsitive e I, for difference in the
D COﬂt/l‘lbUtlonS il |, 4 predicted and actual

Feature
Feature

Feature Effect
Figures from [C. Molnar 2018]

Feature Effect

Lee Sael - SNU
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Linear Models-Coding Categorical Features

0 The choice of encode a categorical feature
influences the interpretation of the (3-weights.

0 Effect coding example: a feature of three
categories [A, B, (]
Feature matrix:

Intercept (represents the overall mean): S,

B: 1 1 0 Effect: By + B4

A: (1—1—1) Effect: By — (By + B2)
C: \1 0 1

Effect: By + B>

* More encoding methods in:
https://stats.idre.ucla.edu/r/library/r-library-contrast-coding-systems-for-categorical-variables/
Lee Sael - SNU http://heidiseibold.github.io/page7/
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@ B%? @? [C. Molnar 2018]
Sparse Linear Models

0 Linear models can be made more interpretable by
making model sparse

0 Simple solutions:

= LASSO: )
. 2
XA M

" Feature Selection:
o Forward selection: iteratively add features to the model

o Backward selection: iteratively delete features from the
model

Lee Sael - SNU
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Logistic Regression

0 Goal: model the probability of random variable Y

being O or 1. hg(x;) = eiﬂTxi = Pr(y; = 1|x;; B)

1 — hg(x;) = _,,T = Pr(y; = 0[x;; B)

0 Interpretation: weights don’t affect the probability
linearly, but are squeezed through the logistic
function -> reformulating odds and odds ratio

hg(x;)
. = ﬁ l = —RT .
odds; = hy(x) exp( p xl)
Change of x; ; by +1 unit, changes the odds ratio by:
0dd5ix-+1

odd,s]i B exp( Bj(xij +1) - ﬁ](xu)) exp(f5;)

Lee Sael - SNU



@a&( @i‘j [C. Molnar 2018]
Generalized Linear Model (GLM)

0 Problem: Linear regression (LR) model assumes outcome
follows a Gaussian. What if they don’t?

0 Solution: GLM extends the LR to model various types of
outcomes using link function g and expected mean Ey on
the assumed distribution

9(Eyilx)) = Bx;

0 Interpretation: assumed distribution and link function
determines how the estimated feature weights are
interpreted.

= EX>logistic regression is a GLM that assumes Bernoulli
distribution and use logistic function as the link function.

Lee Sael - SNU



@ (2 @ [C. Molnar 2018]
Generalized Additive Model (GAM)

0 Problem: What if the relationship between the features
andy is not linear?

Linear mode! Linear model with logifemp + 10)

2 Solutions:

= Transform the feature
(e.g. logarithm)

= Categorization of the
feature

= GAMs that use
regression splines

(Predicted) Number of rented bikes

Temperature (temp)

Figure 4.12 from [C. Molnar 2018]
Lee Sael - SNU
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Generalized Additive Model (GAM)

0 GAMs assume that the outcome can be modeled by a
sum of arbitrary functions of each feature.

.g(EY(Yilxi)) = fo + fi(xi1) + -+ fp(xip)
and using weighted sum of “spline functions” to learn the
nonlinear function.

Lee Sael - SNU

Figure 4.14 from [C. Molnar 2018]

s(temp,3.39)

-1000

| | 1 | | | |

-5000

temp

[C. Molnar 2018]

Interpretation via visual
inspection: Splines are
usually centered around the
mean prediction, so a point
on the curve is the difference
to the mean prediction.

= Ex> At temp o, predicted #
is 3000 lower than the
average prediction.



Decision Trees

Decision trees are non-linear models that can address
features that interacting with each other

Weather =
Sunny

#total
people > 200

Year > 2017 Time =
Morning

Time =
afternoon

#people in
first row > 20

Free
coffee here
= Yes

Free
coffee here
= Yes

Left Stomp  Right Clap!

Figure from [Been CVPR18]

* Can be made more interpretable by pruning

Lee Sael - SNU



@ (7 @i‘j [C. Molnar 2018]
Decision Trees Interpretation

0 Reading the model:

= “If feature x is [smaller/bigger] than threshold c
AND ..., then the predicted outcome is Yjcamode-

0 Importance of a feature in an instance x;

= Go through all the splits for which the feature was
used and add up how much it has improved the
predictions in the child nodes compared to the
parent node and scaled via tree decomposition

* Tree decomposition:
f(x;) =y + XP_, split. contrib(d, x)
=y + Z?zl feat. contrib(j, x)

\

Contribution at the root

)

Lee Sael - SNU
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Decision Rules

BKZ1+

Lee Sael - SNU

If (sunny and hot )

Else if ( sunny and cold)

Else if (wet and weekday )

Else if ( free coffee)

Else if ( cloudy and hot )

Else if ( snowing )

Else if ( New Rick and Morty)

Else if ( paper deadline )

Else if (hungry)

Else if ( tired )

Else if ( advisor might come )
(

Else if ( code running)

Else

then
then
then
then
then
then
then
then
then
then
then
then
then

More human language like using IF-THEN statement

go swim
go ski
go work
attend tutorial
go swim
go ski
watch TV
go work
go eat
watch TV
go work
watch TV

go work

Figure from [Been CVPR18]
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Rule Sets

Another human language like

IF ( sunny and hot ) OR ( cloudy and hot ) OR

( sunny and thirsty and bored ) OR ( bored and
tired ) OR (thirty and tired ) OR ( code running ) OR
( friends away and bored ) OR ( sunny and want to
swim ) OR (' sunny and friends visiting ) OR ( need
exercise ) OR ( want to build castles ) OR ( sunny
and bored ) OR ( done with deadline and hot ) OR (
need vitamin D and sunny ) OR ( just feel like it)
THEN go to beach

ELSE work

Figure from [Been CVPR18]
Lee Sael - SNU
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Intrinsically Interpretable Post-hoc Methods
Model Model
1. Traditionally Agnostic SREstc

5. Transparent Box 3. Explaining Outcome

Part 2: Interpretable ML Overview

* Post-hoc Interpretable Methods
= Explaining Models
= Explaining Outcome

= Model Inspection

Most of the contents comes from
* “Interpretable Machine Learning A Guide for Making Black Box Models Explainable.”
by Christoph Molnar 2018.

Lee Sael - SNU



Explaining the overall behavior of a learning
machine globally over all data.

0 Guidotti et al. [2018] in their review
distinguishes explaining models as two different
problems of but we will consider both as model

explanation problem. (shown in the following slide)
[ Guidotti, et al. ACM Comput. Surv. 2018.]

0 Typical components of explaining models
= Feature based - ex> find important features
= Example based - ex> find prototypes

Lee Sael - SNU
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What is Explaining Models?

Guidotti et al. [2018] definitions:

““Given a black box predictor b and a set of instances X, the
model explanation problem consists in finding an explanation
E € €, belonging to a human-interpretable domain £,
through an interpretable global predictor ¢, = f(b,X)
derived from the black box b and the instances X using some
process f(-, ©). An explanation E € € is obtained through
cgrif E = ¢g,(cy, X) for some explanation logic ¢,(-, -), which
reasons over ¢, and X.” [Guidotti et al. 2018]

“Given a black box predictor b and a set of instances X, the
model inspection problem consists in providing a (visual or
textual) representation r = f(b,X) of some property of b
using some process f(+, -).” [Guidotti et al. 2018

Lee Sael - SNU
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Pal‘tial Dependence PlOt [J. H. Friedman 2001]
Prediction function f(x) is fixed at a few values of the

chosen features x. and averaged over the other
features x..

=— Y flzs,zc)
1=1 g

2

&

Shows the marginal *\V\//\\

effect Of.a feature on g
the predICted Outcome . B Age - : Hormonal.)(Bontracepti\;;s..years.

Figure from [C. Molnar, 2018]

Lee Sael - SNU Model-Agnostic Explaining Models
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Individual Conditional Expectation (ICE)

) i i [Goldstein et al. 2013 ]
Draw one line per instance, representing how the

instance’s prediction changes when the feature changes

Centered ICE plot
Centered at youngest observed age (13)

Cancer l Healthy

Predicted cancer probability

Age

Figures from [C. Molnar, 2018]

Cancer probability difference to age 18
s = (=) =

A PDP is the average of
1 B LI LI TSR
the lines of an ICE plot. .

Explaining Models
Lee Sael - SNU Model-Agnostic Explaining Outcome




Feature Interaction

i.g., H-statistics estimate the

strength of interaction feature  { ® A 1,
x; to all other features x-; by g STOx b - —

measure how much of the .

variation of the predicted A— |

outcome depends on the w-

interaction of the features. I |

[Friedman & Popescu 2008] . p :

00 o 0 0

H-statistics feature X; VS all other features
B2 =" [f(29) - PD;(e") - PD_(="))] /Z £
=1

where PD is partial dependence function

Lee Sael - SNU Model-Agnostic Explaining Models

Overall interaction strength
Figure from [C. Molnar, 2018]
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Feature Importance
[Breiman (2011) Fisher, Rudin, and Dominici (2018)]

Homonal. Contraceptives..years.

Measures the increase of
model error when the
feature’s information is )

destroyed (value permuted). sw s
« Afeatureis “important” modele T T

Smokes « -

Feat

error increases -

* Afeatureis “unimportant” if STk b e
model error unchanged SThs bl dogross- ¢
SThs- o

IUD.years. O

Requires labeled data and ——

model with error computationmese= =
Featira Imnaranca

[C. Molnar, 2018]

Lee Sael - SNU Model-Agnostic Explaining Models




@ s @ﬁ& [C. Molnar, 2018]

Computing Feature Importance

Permutation feature importance algorithm based on
[Breiman 2011, Fisher et al. 2018]

Input: Trained model f , feature matrix X, target vector Y, error measure L(Y, 17)

1. Estimate the original model error e (f) = L(Y, £ (X)) (e.g rmse)

2. Foreachfeaturej €1,...,pdo
/I break the association between X; and ¥ by permuting value of X;

3. Generate feature matrix Xperm; by permuting feature X; in X.
4. Estimate error eperm = L (Y, f (Xpermj)) based on the predictions on

the permuted data.
5. Calculate permutation feature importance FI; = €perm(f) /€org (f)

Il alternatively, use difference FI; = €perm(f) ~ €org (f)
6. Sort variables by descending FI

Lee Sael - SNU



[C. Molnar, 2018]

Global Surrogate Models

Outputs a intrinsically interpretable models that is
trained to approximate the predictions of a black box
model [Breiman 2011; Fisher, Rudin, and Dominici 2018]

e.g., Random forest model fit to decision tree model

STD STDs <= 0 & STDs =0
Hormonal Con! acootves years. <= 13  Hormmonal Contraceptives. years. > 12

Model-Agnostic /

OOUﬂl

.
Haalthy

.class

Figure from [C. Molnar, 2018]

Lee Sael - SNU SIET 416158 Global Surrogate



@&;’;’ g"‘i‘j [C. Molnar, 2018]
Global Surrogate Models

Typical Surrogate Models Used
0 Decision Tree Modeling
0 Decision Rules (surveyed in [Andrews et al. 1995] for neural net)

0 Examples:

= Explaining neural nets

o Trepan [Graven et al. 1996] enrich data using NN as oracle for
generating decision tree & DecTex [Boz 2002] uses pruning in
addition to Trepan for generating simpler tree.

o Generate prototypes [Krishnan et al 1999] or evolve tree [Johansson
et al 2009] via genetic programming to generate small decision trees
from small prototype dataset

= Explaining tree ensembles
o Tree combination using tree similarity measures [Chipman et al 1998]

o Data enrichment + decision tree learning [ Domingos et al 1998,
Gibbons et al 2013, Zhou et al. 2016]

o Generate tree prototype [Tan et al. 2016]

Lee Sael - SNU
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Simple Steps for Generating a GSM

1.
2.

Choose a dataset X.

For the dataset X, get the predictions ¥ of the black box
model.

Choose an interpretable model (linear model, decision tree,
)

Train the interpretable model on the dataset X and

predictions Y.

You now have a surrogate model.

Measure how well the surrogate model replicates the
prediction of the black box model.

Interpret [ visualize the surrogate model.

Lee Sael - SNU
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Global Surrogate Models

0 Strategies used for global surrogate model
construction from base black box model

= Enrich data by using base ML for generating label data.

= Generate prototype data from the base ML data to
generate simpler model.

0 How well surrogate replicate the base model can be
measured by R squared measure that evaluates the
percentage of variance that is captured by the
interpretable model

SSE = —9)°

_S‘S‘_Tzl_ N —
izl(y\i_)/’\i)

where 7;is the surrogate’s prediction for the ith instance and j is the prediction
of the black box model

R?=1

Lee Sael - SNU
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Example-Based Explanations

Selects particular instances of the dataset to explain the
behavior of machine learning models or to explain the
underlying data distribution

a0 Works well for data that have structure or when the
number of features are few

0 Examples What they explain
" Prototypes and criticisms model
= Influential instances model/outcome

= Counterfactual explanations outcome
= Adversarial examples outcome

Lee Sael - SNU
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Prototypes and Criticisms

0 Prototypes are a selection of representative
instances from the data

2 Criticisms are instances that are not well
represented by those prototypes.

LS xxx X X
X % EX> KNN

.S
type 2
X X xi‘x

X X

X Observed

&

MMD-critic [K. Khanna, Koyejo '16]

Lee Sael - SNU Model-Agnostic  Explaining Models §=€1y1:1 (=0 EH=le



[C. Molnar, 2018]

Bo @
Influential Instances
A data is ‘influential’ when deleting it changes the

parameter or prediction of a model.

* Useful for improving the model.
Figure form [C. Molnar, 2018]
0 Approaches:
= Deletion diagnostics
o EX> Cook’s distance - o L
* Influence functions " ;t'// T
> Koh and Liang (2017) /;,ji"".’:':- . I |
Utilize Hessian of the '.’.'"'. ". I

loss function

Model-Agnostic Explaining Models
D) Elirelti{de]y =8 Example-based

Model-Specific

Lee Sael - SNU
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Lee Sael - SNU
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Intrinsically Interpretable Post-hoc Methods
Model Model
1. Traditionally Agnostic Specific
Interpretable 2. Explaining Models

5. Transparent Box EEE e

Part 2: Interpretable ML Overview

* Post-hoc Interpretable Methods
= Explaining Models
= Explaining Outcome

Most of the contents comes from
* R. Guidotti, et al. “A Survey of Methods for Explaining Black Box Models,” ACM
Comput. Surv., vol. 51, no. 5, pp. 1-42, Aug. 2018.

Lee Sael - SNU
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Explaining Outcome (EO)

“Given a black box predictor b and an instance x, the
outcome explanation problem consists in finding an
explanation e € €, belonging to a human-interpretable
domain &, through an interpretable local predictor ¢; =
f (b, x) derived from the black box b and the instance x using
some process f(-, ©). An explanation e € € is obtained
through ¢, if e = €;(c;, x) for some explanation logic (-, ),
which reasons over ¢; and x.” [Guidotti et al. 2018]

0 Explains the outcome such as decisions or predictions
made by the learning machine on an instance.

0 Typical types:
= Explain by returning (set of) features of the instance
= Explain by returning associated rules of the instance

Lee Sael - SNU
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Shapley Value Explanations

Shapley value tells us how to assign feature effects
bij (f) to features for single prediction depending on
their contribution towards the total output generated

by learning model f

* Original Shapely value
calculation for game
theory: Find each player’s
marginal contribution by
simulating the arrival
sequence and taking the
average marginal
contribution.

Shapley (1953)

Lee Sael - SNU

feature.value

Actual prediction: 0.43
Average prediction: 0.03
Difierence: 0.41

Feature value

contributions for
woman 326

Feature value contribution

Figure form [C. Molnar, 2018]

Model-Agnostic Explaining Outcome



B
Computing Shapley Value

[C. Molnar, 2018]

The Shapley value of a feature value x;; is it's contribution to the payed
outcome, weighted and summed over all possible feature value combinations:
ISI'(p — IS| = 1)!

o (val(S v {xij}) — val(S))

[Lundberg &Lee NIPS’17]

¢ij(val) =

Sg{xil,...,xip}{xij}

where S is a subset of the features used in the model, x;, is the feature values of
instance i, and p is the number of features. val, (S) is the prediction for feature

values in set S, marginalized over features notin S:
valy (5) = | fCxin, . 3ip) APy, s = Ex (FO0)

If there are multiple features not in S, you actually do multiple integrations, for
each features not in S.

Lee Sael - SNU



[C. Molnar, 2018]

Local Surrogate Models

Method for fitting local, interpretable models that can
explain single prediction of any black-box machine
learning model by training on variation of a instance of
interest and the model’s output.

Label: strawberry Label: candle, taper, wax light Label: Granny Smith
Probability: 0.35 Probability: 0.16 Probability: 0.12
Explanation Fit: 0.43 Explanation Fit: 0.39 Explanation Fit: 0.15

7

+ >

Figure from [lime R package]
Lee Sael - SNU Post-hoc Model-Agnostic Explaining Data | Feature-based




[Ribeiro et al, KDD’16]

LIME as Local Surrogate Model

Local Interpretable Model-Agnostic 3. Learn a simple (linear)

Explanations model on this data set, which
1. Transforming input is locally weighted
into interpretable —
components.

,‘I o
e
L]
. |:J o/ 2o
S A \.“‘." . 7% i ‘, x. -,'-
> PR ¢ { Locally weighted
Original Image Interpretable 0.00001
Components

P(tree frog) = 0.54

regression

[ ]
- 3 0.52
2. Generate a dataset of Explanation
perturbed instances by turning 4. Present the components
some components “off” with highest positive

weights as an explanation.
Figure Sources: Marco Tulio Ribeiro, Pixabay.

Lee Sael - SNU Model-Agnostic
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[y
Anchor-LIME

A model-agnostic system that explains the behavior of
complex models with high-precision rules called

anchors, representing local, “sufficient” conditions for
predictions e ———

Ribeiro et al AAAI’18

== This movie is not very good

(a) Instances

(b) LIME explanations

{"not”, "bad”} -> M  {"not”, "good”} -
(¢) Anchor explanations

Figure 1: Sentiment predictions, LSTM

Figure from Ribeiro et al AAAI'18
Lee Sael - SNU
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BKZ1

Local Rule-based Explanations (LORE)

First learns local interpretable predictor on a synthetic neighborhood
generated by a genetic algorithm.

Then it derives from the logic of the local a decision rule, which explains the
reasons of the decision; and a set of counterfactual rules, suggesting the
changes in the instance’s features that lead to a different outcome.

Algorithm 1: LORE(x. b)

Input :x - instance to explain, b - black box, N - # of neighbors

Output: e - explanation of x
1 G« 10; pc«—0.5; pm «—0.2; // init. parameters
2 Z_ « GeneticNeigh(x, fitnessX, b, N /2, G, pc, pm) // generate neigh.

3 Z: « GeneticNeigh(x, ﬁtness*;(. b, N /2. G, pc, pm) // generate neigh.

8 7 — Z_ULZ,; // merge neighborhoods
5 ¢ «— BuildTree(Z); // build decision tree
6 r = (p—y) « ExtractRule(c, x); // extract decision rule
7 ® « ExtractCounterfactuals(c, r, x); // extract counterfactuals

8 return e = (r, ®);

Lee Sael - SNU



B @

Counterfactual Explanation

0 Tells how an instance has to change to significantly

change its prediction

0 Describes the smallest change to the feature values that
changes the prediction to a predefined output.

“Starting from
instance X that has
output Y, change
features A and B
from Xto get a
counterfactual
instance X’ that
outputs desired
output Y’ ”

Lee Sael - SNU

Why is this a cardinal, but not a scarlet tanager? m

/ Predict Candidate Counterfactual Evidence \

Counter-Class: Scarlet Tanager

This 1s a Scarlet Tanager

becausc it 1s a red bird with a
Explanation pointy beak and black eves.
E— _p —>
Generator This is a Scarlet Tanager
becausc it 1s a red bird with
black wings and a paingy beak.

P
N

2 Evidence Checker

Attribute Score
red bird 094
)] Evidence Checker [eesmd pointy beak 0.87
black cyes 092
o black wings 012

S
Counterfactual Explanation Generator N

-
(

It 1s not a Scarlet Tanager because 1t does not
have black wings.

Figure from Hendricks et al 2018

Model-Agnostic Example-based
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Computing Counterfactual Explanations
. [Wachter et. al 2017]
An approach for generating counterfactuals:

Loss: L(x,x,y',A)=A"- (f(x’) — y’)z +d(x,x")
Optimization: arg min max L(x,x",y', 1)
X

Input: Given an instance x to be explained, the desired outcome y’, a
tolerance €, and a (low) initial value for A.
1. Sample a random instance x’ as initial counterfactual
2. //Optimize the loss with the initially sampled counterfactual as starting:
While |[f (x") —y'| > e
Increase A.
Optimized the loss with the current counterfactual as staring point
Return the counterfactual x’ that minimizes the loss
3. Repeat steps 1-2 and return the list of counterfactual or the one that
minimizes the loss

Lee Sael - SNU



[C. Molnar, 2018]

Adversarial Examples

0 Counterfactuals used to fool machine learning
models

x* = argmingl||x — X||* s.t. f(x) = f (%)
2 Very similar to counterfactual examples but the
aim is not to interpret a model but to deceive it

+.007 x

“panda” “nematode™ “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

Goodfellow et al. 2015

Model-Agnostic Example-based

Lee Sael - SNU
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Intrinsically Interpretable Post-hoc Methods
Model Model
1. Traditionally Agnostic Specific
Interpretable 2. Explaining Models

Part 2: Interpretable ML Overview

* Transparent Box Models

Lee Sael - SNU



Transparent Box Models

0 Methods that interpreted the models or
predictions specific to the prediction model or
application.

0 Usually does this by

= Making intrinsically interpretable methods more
interpretable.

"= Integrating interpretable component to learning
machine

0 Examples:
= Matrix/Tensor Sparse Decomposition
= Simplified Rule Learning

Lee Sael - SNU



@ 8- @35 [Wagstaff et al AAAI’13]

DEMUD: Matrix Factorization Based

0 Motivated by need of methods in the era of large
scientific data sets for:

= Automatically prioritize data for review.
= Make decisions that they can understand and trust

Proposed

0 DEMUD: Discovery through Eigen basis Modeling of
Uninteresting Data

0 Uses principal components modeling and
reconstruction error to prioritize data.

Lee Sael - SNU



@ (7% g’? [Wagstaff et al AAAI’13]

DEMUD Example

DEMUD result on Glass data set, expressed as
residuals in original units (percent composition).
Positive (negative) values are higher (lower) than

expected;

Selection | Class (proportion) R  Na Mg Al Si K Ca Ba Fe
l container (6%) -0.001 -160 -086 +0.79 -280 +540 -024 -088 -0.01
2 building window, non-float (36%) | 0.000 -0.72  0.00 =200 -032 -610 4920 000 +0.4
3 tableware (4%) +0.005 +460 000 -210 +500 -450 -290 000 -007
5 headlamp (14%) -0.002 =280 -056 -041 +3.00 +130 -0.05 -046 -0.06
6 building window, float (33%) +0.003 -028 +400 -050 -080 -180 -032 -037 -0.05
§ vehicle window, float (8%) +0.002 +043 +290 -043 -120 -093 -002 -049 -007

[Wagstaff et al AAAI’13]
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Background: Tensor® as Data Structure
How can we represent multi-mode data?

Ti""y' fibe
..qg) 1;
g
B Somatic mutation Source X
E‘ . Methylation IP
v“{‘, Copy number variation /
miRNA expression vl V
Genes (selected) MRNA expression Destination IP
Multi-platform Bio-data Network traffic data
(patient — gene — platform) (src IP - dst IP - time)

*Tensor: a multi-dim array. 1D is array, 2D matrix and 3D cube

Lee Sael - SNU
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Tucker Decomposition

AL
\k-y I)C=9><1U><2V><3W
| xJ XK zxxxgrstUTOVsOWt
r s t

xR JXxS
8L =[S ;U,V,W]
X RxSXxT

Proposed by Tucker (1966)

U, V, and W generally assumed to be orthonormal
G is not diagonal

Not unique

Lee Sael - SNU



Why Interpretability?

0 3. Gain insights for advance in science

= Ex> Detecting causality, detecting significant
features'

9 gene subtype

FJ ‘ ﬂé@ N! W e

} |
|
T
o}

LLLLL

......

o2 It | — MRNA dominates

] %) = . .
—» Somatic mutation dominates

Lee Sael - SNU [D. Choi & L. Sael (in submission)]
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Interpretable Factor Matrix: Idea 1

How can we enables natural interpretation of factor
matrix?

233
ore . L. v
Idea 1: utilize existing T g 2
£ o
knowledge =
_[ Gene 1
" - - Gene 2
-EJ ~ % Gene 3
2 A G
= O
o IXJXK %'@e(o o B
genes N . @
g{ Gene I

16XJg

Interpretable Gene Factor Matrix B

Lee Sael - SNU
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@ Bkt %ﬂj [S. Oh, J. Lee & L. Sael (2018) Bioinformatics]

Idea 1: Scheme of GIFT

GIFT: Guided and Interpretable Factorization for Tensors

PanCanl2 tensor Core tensor Sample Gene Platform
&0@ Ky factor matrix factor matrix  factor matrix
¥ N .
~ 2 P
02 LGP Xsf o] %e Xp |4
S X 36250 lp>Jp
&
A6
Gene lsxJs
1=14,351

[teration at time\t: loxJg

Gene 1 = {
gggg % S Row-wise factor matrix update rule
4© S | ) - 4© derived by computing a gradient of loss
O f? function
*%5 - Paralleled using openMP
[
1sXJs B lsXJg lsXJg
Gene I




(f] ﬁ?
@ w5 [S. Oh, J. Lee & L. Sael Bioinformatics]

Proposed Method: Objective Function

0 Regularize using Mask Matrix M(?) on gene
factor matrix

L(G,AD, 4@, 4®), M®D, Y@, Y®) =

1
(n)
'S (v oo

VYae VBEG n=1

> A

ne{1,2,3}

Lee Sael - SNU
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Proposed Method: Parallelizable Update Rule

The row-wise update rules are derived by setting the gradient
of object function to zero. [S.Oh,J. Lee &L. Sael (2018) Bioinformatics]

arg min(L(G, AW, ..., AN M M)

(n)
[ajn:]

e x [B™ + /wgm]‘l

Intermediate data [s. on, L. Sael et al. ICDE 2018]

(n) InXJn
B(n)(h J2) = z 5(n)(11)5(n)(12) Bin €R
Vaell

, , (n) n

D= ), Xad0) o €R
Vaeld

n) - _ (k)
8 () = z GG in=iin) | | Qi 5 e RIn

V(jijn=JJiN)EG k#n
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@ B2i @ [S. Oh, J. Lee & L. Sael Bioinformatics]

Proposed Method: GIFT Algorithm

Algorithm 1 3-order GIFT

Input: A tensor X € RIS*IGXIP with observable entries €2, mask matrices
M) MG MP) | rank (Js. . Ja.,JJp).and a regularization parameter \.

Output: A core tensor G and factor matrices A AG) A(P)

1: initialize G and A®), A(G) A (P) randomly

2: repeat

3: forne S,G,Pdo

4: forip, =1.--- .1, do

3: calculate intermediate data §. B(n) and c(n) by Eq. (2) - (4)

6: calculate D;,, . where its (j, . jn )thentry is M( Zn
7: update a row u( ) by ¢ ( ) [BEZ) + )\D.i7z]—1
8: end for |

9:  end for

10:  compute reconstruction error by Eq. (5)
1 1: until error converges or exceeds maximum iteration

LCC 2d<l1 - NNV



GIFT Dataset : PanCan12

[S. Oh, J. Lee & L. Sael Bioinformatics]

Table 2. Summary of dataset. M: million, K: thousand.

Dataset Order Size Observable Entries
PanCanl2 tensor 3 (4,555 x 14,351 x 5) 180M
Sampled-PanCan12 3 (4,555 X 14, 351 %X-5) 36—144M
Mask matrix M(¢) 2 (14,351 x 50) 7K

Lee Sael - SNU
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AR [S. Oh, J. Lee & L. Sael Bioinformatics]

Results: GIFT vs Compared Methods

Input tensor Core 1st nth Nth
tensor factor matrix factor matrix factor matrix
X ~ G )(1 A(l)\xz . )(n A XTL+1 .. )(N AWN

A

Updating A™ while keeping all others fixed

A" A ™ Guided
Q regularizationA=
P-Tucker GIFT

[S. Oh, L. Sael et al. ICDE 2018]
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Interpretability

0

Subset of Genes
PN w N bt
o o o o
o o o o

w
o
o

0

Subset of Genes

Lee Sael - SNU

- ® mm o TR T

1 - Mask Matrix

\ 4

L - - --.
- & . -
1 1 ||

P-Tucker Gene FM

N -
o o
o o
1 !

300 -

b - — c ———— e ——— - —

T T
0 20 40

Gene Set Index

[S. Oh, J. Lee & L. Sael Bioinformatics 2018]

GIFT Gene FM

1.0

0.5

1.0
H:O.S

—

—{

ren)

Gene Set Index

20

40

-10

Silenced-TF Gene FM -

~ 0.05

- 0.00

~0.05

~0.10

Mask matrix and
gene factor
matrices (FM) of
GIFT, P-Tucker, and
Silenced-TF.

Subset of genes are
shown for better
visualization.



[S. Oh, J. Lee & L. Sael Bioinformatics]

Accuracy

A;.. 4 7.5x 15.1x B 0

210 ' ST 10

. [

.S g g 6.4x

*5 -

§103'r q % 10

Z 4 %

Q =

5 g

2107 > % e

o 001 01 1 10 100 1077001 01 1 10 100
Regularization Parameter Regularization Parameter

Lee Sael - SNU

GIFT —3 Silenced-TFE==1 P-Tucker ==

Performance comparisons of GIFT, Silenced-TF, and
P-Tucker.

A. is reconstruction error plot.

B. is a test RMSE plot.
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[S. Oh, J. Lee & L. Sael Bioinformatics]

R4: Scalability

—~. 24000 < 104 v v v =

2 S =X GIFT-o—

& 20000 m _P-Tucker ——

g 16000 .5 ‘ Silenced-TF —¢—

= o 10° W 1

op) 12000 S i

k= 17 Faster

£ 8000 8 Convergence

- Q

&2 400 . . . S 12— . ; 2
02 04 0.6 0.8 1 2000 4000 6000 8000

Sampling ratio Running Time (secs)

Convergence and scalability of GIFT.

A. GIFT shows faster convergence than Ptucker and has

higher accuracy than Silenced-TF.

B. Total running time of GIFT wrt the number of non-zeros.
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R5: Empirical Validation

Significant relations found on the PanCan12 dataset via GIFT.
(: important gene, +: not included in a gene set, but related).

[S. Oh, J. Lee & L. Sael Bioinformatics]

Cancer Gene set Genes Evidence
HNSC. LUAD. SKIL* Encodes the SNON, negative regulators of TGF-beta signaling (Tecalco-Cruz er al., 2012)
LUSC. BLCA  TGF beta signaling  FKBPIA® Interacts with a type [ TGF-beta receptor.
LEFTY2" Encodes a secreted ligand of the TGF-beta family of proteins.
GBM fpstszaais 'PFJ". [nhibits cell proli'fcl'mion 'tmd Iangiugenesi:s in vitro um? in \'ivo. (Bik;fal\v'i. :(NH).
i VCAN® Encodes a protein involving in cell adhesion, and angiogenesis (Wight, 2002).
Estrogen response ILI7RB" Involved in development and progression of breast cancer (Alinejad er al.. 2017).
BRCA late TFF3* Promotes invasion and migration of breast cancer (May and Westley, 2015).
Bile acid APOAT” Breast cancer risk factor (Martin ef al., 2015).
metabolism
Interferon-gamma IRF7* Encodes interferon regulatory factor 7.
OV. UCEC Iespolise BST2" High levels of BST2 have been identified in ovarian cancer (Shigematsu er al., 2017).
' Apoplosis CASPSAP2?

Associated with apoptosis of leukemic lymphoblasts (Flotho et al., 2006).
Encoded protein plays a regulatory role in Fas-mediated apoptosis (Imai ef al., 1999).

READ. COAD Protein secretion STXT7*

Controls vesicle trafficking events involved in cytokine secretion (Achuthan et al.. 2008).
KIRC, LAML Mitotic spindle LATSI®

Binds phosphorylated zyxin and moves it to the mitotic spindle

Lee Sael - SNU
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[J. Lee, D. Choi, and L. Sael (2018) PLOS One]

Interpretable Factor Matrix: Idea 2
How can we enables natural interpretation of

factor matrix?
7

Idea 2: use Sparse Interpretable fibers Reuses of interpretable fibers
and interpretable pa

input fibers as
columns of a factor
matrix il 4

U

Q

X

Interpretable Factor Matrix R

Lee Sael - SNU
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Motivation - Problem

0 Q1. How can we design an efficient sampling-based
tensor decomposition in a static environment?
= Efficient = accurate, quick, and memory-efficient

0 Q2. How can we do this in a dynamic environment?

~ | C v ~ C
X
- /
Static environment Dynamic environment
- Offline, full data is given - Online, data arrives at

every time step

Lee Sael - SNU
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Algorithm - CTD-S

= Static version of CTD

= Only maintain linearly independent fibers to keep result
compact.

* Input: tensor y, sample size s
= Qutput : tensor €, matrices U and R (consisting of fibers of y)

Original tensor

: U
X

“Check linear dependency
\o remove redundant fibers”

l Matricization

»

Non—uniform'
Sampling ( = 0.3*red + blue ...)

Lee Sael - SNU



Algorlthm CTD-D

= Dynamic version of CTD

= Exploits existing factors at previous time step to update its factors
quickly.

= Input: new tensor Ay, factors C, U, R at previous time step t

= Qutput: factors C, U, R at previous time step t + 1

Newly arrived tensor

Y Jdi |
Matricization M

Check linear ‘ | Non—unliform
dependency gl sampling

J'Updat s using sampled fibers
u® > (t+1)\
t U
co| ||RY Ct+D) “7
Timestep:t Timestep:t+1

Lee Sael - SNU
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Performance

0 CTD-S (static) : 2 ~300x more accurate than tensor-CUR

= Theoretically, it is proven that CTD-S has the optimal accuracy.
Rel. error W tensor-CUR| B CTD-S

A A A

1 A
0.8
0.6

0.4
0.2

0 v
CAIDA E-mails Haggle Hypertext 2009
0 CTD-D (dynamic) : 2 ~ 11x faster than CTD-S

Rel. time B CTD-S CTD-D

1
0.8 IXZ.l I x1.7
06 x10.8 I | %33

X22.3 %13 %20.4
1
v

A 4
I PR— |

X329

0.2
0

e Sael - SNU CAIDA E-mails Haggle Hypertext 2009



UL
Online DDoS attack detection Example

0 Directly determine destination host and
occurrence time of a major activity
represented in a fiber in R by simply tracking
the indices of fibers.

n Recall Precision | F1 score
1 1.000 1.000 1.000
3 1.000 1.000 . 1.000
5 0.880 » 1.000 ’ 0.931
7 0.857 1.000 0.921

hitps://doi.org/10.1371/journal.pone.0200579.t005

Table 5. The result of online DDoS attack detection method based on CTD-
D. n denotes the number of injected DDoS attacks
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